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Preface

Planning and scheduling are well-established disciplines in the field of Artificial Intelligence. They pro-
vide flexibility, robustness, and effectiveness to complex software systems in a variety of application areas.
While planning is the process of finding a course of action that achieves a goal or performs a specified task,
scheduling deals with the assignment of resources and time to given activities, taking into account resource
restrictions and temporal dependencies. In other words, planning focuses on reasoning about causal struc-
tures and identifying the necessary actions for achieving a specific goal; scheduling concentrates on resource
consumption and production for optimizing a coherent parameter assignment of a plan. As successful these
techniques clearly are, the actual demands of complex, real-world applications go far beyond the potential
of these single methods, however. They require an adequate integration of these problem solving meth-
ods as well as a combination of different planning and scheduling paradigms. Particularly important are
abstraction-based, hierarchical approaches because of both their expressive knowledge representation and
their efficiency in finding solutions. Current state-of-the-art systems rarely address the question of method
integration; isolated approaches do so only in ad hoc implementations and mostly lack a proper formal
basis.

This thesis presents a formal framework for plan and schedule generation based on a well-founded conceptu-
alization of refinement planning: An abstract problem specification is transformed stepwise into a concrete,
executable solution. In each refinement step, plan deficiencies identify faulty or under-developed parts of
the plan, which in turn triggers the generation of transformation operators that try to resolve them. All in-
volved entities are explicitly represented and therefore transparent to the framework. This property allows
for two novel aspects of our approach: First, any planning and scheduling methodology can be functionally
decomposed and mapped on the deficiency announcement and plan transformation generation principle,
and second, the framework allows for an explicit declaration of planning strategies. We first investigate
the flexibility of the extremely modular system design by instantiating the framework in a variety of sys-
tem configurations including classical partial-order causal-link (POCL) planning, hierarchical task-network
(HTN) planning, and classical scheduling.

As a key feature, the presented approach provides a formally integrated treatment of action and state abstrac-
tion, thus naturally combining causality-focused reasoning with hierarchical, procedure-oriented methods.
While the use of procedural knowledge allows to rely on well-known, predefined solutions to planning
problems, the non-hierarchical methods provide the flexibility to come up with non-standard solutions and
to complete under-specified problem instances, respectively. The resulting technique of hybrid planning
is capable of constructing a plan’s causal and hierarchical structure across multiple levels of abstraction
by using plan development options of both the POCL and HTN paradigms. We also present an integrated
planning and scheduling system that is defined in our framework. For the first time, such a system is able
to combine any ensemble of planning and scheduling technologies on the operational level and to address
the respective deficiencies opportunistically. The accordingly unique representation of application domains
incorporates temporal phenomena and resource manipulations not only for basic actions but on the abstract
action level as well. This leads to the novel technique of hierarchical scheduling, in which the concept
of abstraction is extended to resource representation and reasoning, for example resource aggregation and
approximation.

Thanks to its well-defined functional composition, the framework yields a major improvement with re-
spect to the capabilities of planning and scheduling strategies. The explicitly represented information about
a plan’s deficiencies and development prospects makes it possible to utilize a new quality of knowledge
sources, including relationships between deficiencies, refinements, and components in the plan to which
they refer. This leads to the novel class of flexible strategies, which decide upon problem characteristics and
the current state of the plan generation process, respectively. The most prominent representatives are our
HotSpot and HotZone strategies, which take into account the structural dependencies between problematic
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elements in the plan when deciding upon their resolution. They are independent of both the application
domain and the concrete framework instance. Therefore, they can be deployed for POCL planning as well
as for integrated planning and scheduling, for example, and any other combination of methods the over-
all framework allows for. In addition, these strategy components are not only easily exchangeable, they
can also be combined into sequences of decision procedures in which succeeding components fine-tune the
choices of the preceding ones. We present the declarations of a comprehensive strategy repertoire, ranging
from classical strategy components that implement well-known search principles from the literature to an
assortment of flexible strategies.

Our formal framework is not only a method for specifying a variety of planning and scheduling functional-
ity, it also enables the derivation of software architectures for fielding the corresponding systems. We show
how the formal entities of the framework can be directly mapped onto software artefacts in a knowledge-
based multiagent architecture, which optimally supports concurrency – by enabling parallel computations
of plan deficiencies and refinement options – as well as the paradigm of distributed knowledge manage-
ment. While the former addresses the practical issue of managing multiple computational resources the
latter matches perfectly the idea of different modules representing different planning and scheduling as-
pects.

Our implementation of the framework resulted in a complex planning environment in which any planning
and scheduling system can be easily compiled from a rich collection of functional components. By system-
atically alternating the system configuration and its parameters, it can also be used as a testbed for the evalu-
ation of framework components, in particular planning strategies and refinement methods. This allowed for
conducting a large-scale empirical study on dozens of strategy configurations, which is the first extensive
experimental effort in the domain of hybrid planning. It concludes this thesis with four important results:
First, we gain insights into the performance of members of our strategy portfolio on a set of benchmark
problems. We thereby learned how to graduate performance measures and how to assess such test results.
Second, we became familiar with the characteristics of the examined strategies, the experiment problems,
and also of the benchmark domains. Third, our findings clearly support both the necessity and feasibility
of systematic experimentation in order to identify suitable strategies for a given application domain. Last,
but not least, our evaluation effort proves that our environment is an effective platform for orchestrating and
operating component-based planning and scheduling systems, in terms of flexibility as well as in terms of
efficiency.
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1 An Introduction To This Thesis

I have a plan.
What sort of plan?
A plan that cannot possibly fail.

(Blake Edwards, A Shot in the Dark.
Metro-Goldwyn-Mayer Studios Inc.,

1964)

THE cited movie scene shows police Inspector Jacques Clouseau arguing with his superior at the very
moment in which he is absolutely sure that he has understood the motives of the murderer, that he
can anticipate his next moves, and that he knows exactly what has to be done in order to finally

imprison the villain. Although he is wrong with his statement in every possible way, his situation may serve
us as an illustration of what planning is all about.

First and foremost, planning is defined as the process of developing a detailed formulation of a program of
action, intended to achieve an end when executed. Thus, plans are inseparable from the notion of an aim or
a goal; the phrase “what are your plans?” not only refers to what exactly the asked person is going to do
but mostly what the asked person is aiming at. The second essential concept is the assessment of the initial
situation, which is providing an explicit description of what the world will be like when the plan is going to
be executed. Inspector Clouseau is doing so by making aware to himself and to his collaborators what the
known and deduced facts of the current case are. From this point of view planning is, conceptually, finding
out what to do in order to reduce and eventually eliminate any difference between an initial situation and the
goals (that means, arresting the murderer).

Planning consequently involves more than just a quick guess for surviving within a short time horizon and
is generally regarded as the antithesis to reactive decision making; it is definitely connected with higher
cognitive capabilities of human beings. All actions in a plan are included for a specific purpose; they
are aiming at satisfying goals, possibly necessitating further actions to be performed before and therefore
introducing new (sub-) goals. In the film scene, the Inspector’s goals are to expose a criminal’s identity
so he is trying to anticipate which actions (more precisely: which actions in which timely order) are going
to make the murderer make an unwary move. Obviously, this also involves examining the own actions for
negative interactions: For instance, observing a suspect conflicts with questioning the person at the police
station. All these performances are often superficially called “thinking about the actions’ outcomes”, but
there is a more systematic process at work.

The respective entry in the Merriam-Webster Dictionary has an interesting note at the end, which says
“PLAN: always implies mental formulation”. This mental formulation is a key feature of the planning
process: Planning, like it is shown for the police Inspector, involves temporal projection of actions and
processes, their conditions and results, and finally a reasoning process about whether the acting agent will
eventually achieve what has been aimed at. This implies the development of a model of the world in which
predictions about the world’s dynamics can be made, and it implies the implementation of an adequate
reasoning process that is able to infer courses of actions from that model that reach goals, which in turn are
represented in the model as well.

Regarding the reasoning process, Clouseau’s example indicates two methodologies for building a plan. Both
rely on a situation assessment; their ways of representing goals and deriving courses of actions from them
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are however of a completely different kind. The first principle is to perform a regression on the goals,
which means to identify what actions have to be performed in order to achieve the goals and then in turn
to identify those actions that have to be performed in order to be able to perform the actions beforehand,
etc., until the initial situation matches all execution requirements. There are many technical deviations
possible, for instance to treat all goals equally versus to prefer goals that seem more important or to let
chains of regression cause an overlap versus a linear treatment, but the basic process is essentially always
the described one.

The nature of the second principle lies in the fact that human beings have certain experiences, rules of thumb,
or written guidelines that give them the ability to formulate abstract plans of actions. Clouseau knows, for
example, that he has “to observe the suspect” in order to get more information on the case. He does not
perform a reasoning process like “in order to get the information where the suspect lives, I have to watch
which house the suspect enters. In order to watch which house he enters, I have to be very close to the suspect
when he enters a house. In order to be very close to the suspect in this situation, I have to ensure to follow
him to the particular house from whatever place he went to before”, and so on. What humans do in such
cases is to start out with an abstract plan and then to think about possible refinements of the individual plan
steps. The cited film shows many examples of how the Inspector thinks a professional observation has to be
conducted, that means he proposes a number of alternative plan refinements. While most of the alternatives
are similar undercover operations, the observation task could also be realized as an observation distributed
among a number of police men, etc. As we will see in later sections, refining abstract plans in order to obtain
executable courses of actions is not only a technical variation of the plan generation schema, but indeed a
matter of principle and a fundamentally different approach to planning.

Having said this, it becomes apparent that although the two kinds of plan generation are working in a
different way, in general, both are performed in an interleaved way. The typical human planner uses both
mechanisms and representation principles in parallel.

Another aspect of this thesis’s topic is the usage of time and the involved resources. For solving the case, it
is not only important to know what to do but also when and with what means to do it. The first paragraphs
assumed the temporal projection to be an abstract qualitative process, defining actions to be executed one
“after” another. This is of course a strong simplification, because, for example, the suspect could leave the
country at a specific point in time and has to be observed before that. Some actions have to be carried out
during day, some others during night time, etc. The allocation of resources is also a crucial information that
has to be taken into account, because the number of available policemen limits the number of leads that can
be followed in parallel, other resources limit the usage of certain police laboratories for the examination of
pieces of evidence, and so on.

Although humans tend to perform detailed temporal and resource reasoning after deciding on the course of
action to pursue, the way how a plan can be implemented always feeds back into modifying the plan again.
In particular, if tight deadlines are given and if resources are really scarce, temporal and resource reasoning
are entwined with plan generation.

Leaving Inspector Clouseau and the anthropomorphic view on the topic, we can state that planning (in-
cluding temporal reasoning and resource scheduling) is in general a very high-level cognitive capability
that involves mathematical models of the application domain and logical reasoning techniques to derive
courses of actions from problem specifications. The sheer amount of information processing that is re-
quired to obtain a solution in a tolerable period of time and that is both guaranteed to work properly and
be a “high-quality” solution, all that makes planning a very demanding task for humans. Since planning
is mission critical in numerous contexts, supportive mechanisms become necessary, ranging from practical
paper-oriented methodologies to mechanized computer-based tools.

The vision that emerges from that situation is twofold: (1) Automated planning could make use of the full
bandwidth of information technology that enables to overlook multiple plan alternatives simultaneously, to
keep track of thousands of facts and mutual relationships between them, and finally to take into account
safety-conditions, etc. (2) A second aspect would be to enhance applications with planning technology in
order to make them more intelligent and flexible: Tools for decision-making support are able to propose
solutions creatively instead of passively evaluating the user input, autonomous systems gain true autonomy
for they work out their courses of actions by themselves, and the like.
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This is where the science of Artificial Intelligence enters the stage.

The everyday success of human intelligence inspired many researchers in the field of computer science to
mimic the cognitive processes and to built humanoid software systems of comparable, if not equal, perfor-
mance. In the mid-1950s, the research area of Artificial Intelligence (AI) became apparent and was engaged
in the planning topic more or less from the very first day on. Planning has been a central issue in AI ever
since and it is consequently not amazing that planning has not only been pursued on the technical side in
many conferences and workshops and countless scientific projects but also promoted politically. A large
number of planning-related projects is sponsored by the DARPA agency of the United States Department
of Defense, which consider planning as a valuable technology for use by the military. The European Com-
mission established PLANET, the “Network of Excellence in AI Planning”: it regarded the planning topic
important enough to fund this coordinating framework for the interchange and social network building in
the planning related scientific communities and industrial sectors.

For some reasons, the research efforts for building the described cognitive processes have been split into
three mostly disjoint communities and pursued independently for many years. First, the generation of plans
has been considered to be independent from the allocation of resources over time and thus the areas of
planning and scheduling diverged. While the former stayed in the focus of AI researchers, the latter was
dominantly pursued in the area of applied mathematics (Operations Research). The planning community
finally regarded the principles of hierarchical plan refinement to be fundamentally different from the goal
regression type of planning, considered them to be mutual exclusive, and split into two sub-communities.
These groups perceived their fields as competing areas with one being labeled “domain-independent” plan-
ning, seeking for the holy grail of ultimate computational performance, and “domain-dependent” planning,
being the application-oriented practitioners.
The following introductory sections will outline these three areas, provide some historical background, and
present their main concepts and technical achievements.

However, after many years of progress in isolation, AI researchers realized that with their application areas
becoming more and more complex, the tackled problems became more and more mixed semi-hierarchical
planning and scheduling problems. The strict separation of the methods consequently begun to ham-
per developments, because irrespective of the individual success of the involved techniques, combining
them was problematic already on the representational side and mostly impossible on the reasoning al-
gorithm side. The research communities recollected that the difference between the developed planning
and scheduling methods lay in optimized solution techniques and that a re-integration is highly desir-
able.

This is where this thesis comes in.

Although recent developments try to selectively bridge the gap between the three areas, we see that there is
a need for a common, uniform formal basis in order to obtain a full and seamless integration. Consequently,
the adjective hybrid has been put intentionally in an ambiguous position of this thesis’ title, so the mixture
may be composed of different planning aspects, but it emphasizes as well that the resulting system is an
offspring of the two concepts planning and scheduling. Our ultimate goal is a theory that unifies all branches
related to planning and scheduling by one representation and one family of reasoning algorithms. This
formal basis will enable a new family of search strategies that take advantage of all planning methods that
are covered by the hybrid and we will show how the theoretical framework can be directly translated into an
effective software platform for productive use and scientific experimentation.

The following sections review both the state-of-the-art in the areas of planning and scheduling, presenting
approaches that may contribute to our task from the technical point of view, and approaches that address the
described issues in an alternative way. We will not only see the diversity of the field but also its fragmentation
and we will motivate the necessity to overcome the differences. This thesis wants to contribute to bridging
the gap in several dimensions:

• It wants to provide a reliable and theoretically well-founded basis for planning and scheduling,

• foster research by creating a planning and scheduling technology that can be deployed in a plug-and-
play fashion, and
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Figure 1.1: Interpretation of a planning domain as a state-transition system [118].

• make new application areas accessible by developing a software conception that allows for realizing
planning functionality based on the above concepts.

These visions and aims will be made more concrete after the technical introduction sections.

1.1 AI Planning in a Nutshell

In this section, we want to give an overview over the relevant developments in the area of AI planning. The
presentation is organized along two dimensions: on the one hand we want to point out technical relation-
ships, on the other hand to show their historical progression. We analyze the mutual dependencies between
the choice of representational features, in particular the plan data structure, and the planning algorithms.
It is these dependencies, which caused not only the field’s rich (positive) diversity and technical achieve-
ments but also its (negative) scattering and incompatibilities. At the same time, this section has a focus on
the common representation concepts and underlying algorithmic principles, which motivate our theoretical
foundations and ultimately our integration efforts.

Before we are going into the details of the different planning methods, let us have a look at their commonali-
ties. Practically all AI planning approaches view the world as a state transition system and consequently the
task of planning is to choose and organize actions for changing the state of that system (cf. the conceptual
model for planning in [118]). The description of the state features and of the actions – in particular, which
state changes they induce – is given by a planning domain model, which typically consists of a more or less
formal language and of operator definitions. We furthermore assume that an interpretation I is given for
the language elements and operators, that maps the planner’s domain model entities to the state-transition
model of the execution environment, thereby providing a referential frame for any course of action that is
expressed in terms of the planning model. Fig. 1.1 depicts the correlation between the real-world applica-
tion, represented by a state-transition system Σ, and the planning domain model, represented by a problem
specification. A plan in this context is basically a sequence of instances of the operator definitions, but there
are advanced, more sophisticated representations.

A planning problem is typically specified by a domain model, an initial state, and a goal state description. A
plan is considered to be a solution to a problem if it is constructed over the given domain model, executable
in the initial state, and its execution results in a state that fulfills the goal state description. Again, there will
be shown various examples for enhanced problem specifications and solution criteria, but this is the most
general case.

Implementations of this concept have been employed successfully in many application areas. Although
there may be some researchers left who still focus on solving the re-arrangement of tons of toy bricks or the
defusing of thousands of explosives in millions of lavatories, the technology has become sufficiently mature
to be applied in areas that are relevant for the economy, technical innovation, and daily life of a modern
society. Let us give some examples:
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1.1 AI Planning in a Nutshell

Crisis management is one of the most often addressed application areas, because it is the prototypical prob-
lem of planning: Find a course of action for managing the crisis, take into account numerous events, staff,
and material, and do so under time pressure. For instance, planning scenarios for military evacuation op-
erations are a subject of automated planning [261, 262] and interactive decision support [89, 195]. In the
last years, support for addressing environmental crisis has gained more and more attention: Examples are
emergency response to marine oil spills [2], disaster relief management in floodings [26], and forest fire
management [9, 70].

Closely related to crisis management, a typical planning application in the commercial sector is transporta-
tion and logistics [90,259]. The technology is also involved in manufacturing process planning, for instance,
the production of microwave modules [242], the generation of plant control programs [43], or the platform
deployment in the space sector: the assembly, integration, and test of spacecraft [1,87].

Another important topic is the control of autonomous systems. The most prestigious application is certainly
the New Millennium Remote Agent of NASA, where planning technology was a core component in realizing
the control software for an autonomous deep space probe [142, 194]. As autonomy became increasingly
relevant for commercial space missions, several planning application emerged in this sector, for example
communication and antenna operation planning for supporting unpiloted interplanetary spacecraft missions
[58]. There are also classical industries with the need for a high degree of autonomy, for example dock-
worker robots [3], and an endless list of robotics research programs that use plan-based controllers for
strategic decision-making.

With the rise of the service metaphor for web-based content providers, planning technology becomes a
key component for automated composition of web-services due to increasingly complex service mod-
els and user requirements [263]. The problem of data retrieval on restricted and/or commercial knowl-
edge sources has also been addressed by the planning of appropriate queries and integrating their re-
sults [7].

As a last application area, computer games can benefit from planning technology. Although card games are
a classical problem for game-tree search techniques, planning methods have been successfully applied to the
game of bridge and even provide the current world-champion in software bridge [243]. On the borderline
between in-game AI and intelligent software development tools we also find planning systems that generate,
for example, state automata for computer-controlled characters [210].

As a concretization of the above general conceptual view, the following sections will present the field of
AI planning as four segments: First, we are going to describe classical planning techniques in order to
give the background for many representational issues in planning. Second and thirdly, we introduce partial-
order planning and hierarchical planning, which are the two complementary main components in our hybrid
planning framework. The fourth and final segment that we investigate is the state of the art in hybrid
planning. After that, we are taking a look at resource reasoning, that is to say, at scheduling and resource
planning approaches. We conclude our review with a brief glance at other planning techniques that are
beyond the scope of this thesis. For more information on the different trends, in particular those that we
omit here, we refer the reader to textbooks and review articles that are commonly regarded to cover the field
in a representative way [4, 118, 198, 281].

1.1.1 Classical Planning

The most prominent representative of AI planning systems is certainly the STRIPS system [92], and it is
commonly regarded as the first specific planning system. The “STanford Research Institute Problem Solver”
was built to control a mobile robot on the strategic level in order to enable it to carry out transportation tasks
in an in-door environment. The STRIPS planner performs a means-end-analysis, that means, it performs a
backward-search in the state space: Starting from a goal state specification, the algorithm chooses an unmet
sub-goal (the end) for which it tries to identify the necessary action that satisfies it (the means). Choosing an
action in turn induces some new goals – its executability criteria – and the algorithm is called recursively on
these new goals. This backward search terminates on those actions that are directly executable in the initial
state and the algorithm performs a state-progression phase: It updates the initial state by applying the effects
of the executable action to it. After that, the updated initial state is passed back to the previous recursive
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Figure 1.2: Sussman’s Anomaly.

call, in which the procedure continues to search for the means to establish the current ends. The described
mixture of backward-search and forward-progression is also called “island-search”, that means, the planner
identifies islands states for which it tries to find suitable plans to connect them. In this way, a plan is more
or less constructed backwards with respect to its later execution.

An in-depth description of this well-known algorithm is beyond the scope of this presentation (cf. appropri-
ate textbooks, for example [118, 209, 223]). In our context, we believe it is sufficient to note that STRIPS’
exclusive focus on the newly introduced goals reduces the branching factor of the backward-search, how-
ever makes the algorithm incomplete in the general case. The STRIPS planning procedure namely relies
on the assumption that sub-goals are independent from each other and can be pursued in an arbitrary or-
der. The outcome of the STRIPS algorithm and any intermediate results are totally ordered sequences
of actions, hence STRIPS and its relatives are also called linear or total-order planners. A great advan-
tage of this particular modus operandi is that it becomes possible to infer the accumulated consequences
and pre-requisites of actions in a computational cheap manner and for very expressive action representa-
tions.

The above mentioned incompleteness of STRIPS became visible for the famous “Sussman’s Anomaly”. In
experiments with the HACKER planning system developed by Gerald Sussman [253], Alan Brown at MIT no-
ticed that the planner had difficulties with a toy problem as it is depicted in Fig. 1.2. Although it appeared to
be ridiculously simple, it was challenging for STRIPS-like implementations due to the interacting sub-goals:
If the planner chooses solving block A to be on block B first, it consequently produces a sub-plan that builds
a two-block tower with A on B. Depending on the concrete algorithm, the system is now stuck, because the
complete goal cannot be achieved without undoing the reached sub-goal, or it continues with constructing a
plan fragment that undoes the previously generated one. In the latter case, the obtained solution is subopti-
mal. Unfortunately, choosing the other sub-goal first leads to an analogous dilemma and therefore solving
the Sussman Anomaly in an elegant way became a driving research task.

Since the dependency of goals was obviously not only the cause of the toy problem being hard but also
proved the corresponding STRIPS assumption to be fairly unrealistic, many solutions to this phenomenon
have been proposed. First patches addressed the analysis of goal interactions, for example, INTERPLAN
[254]. But soon the primary weakness of the STRIPS-like approaches was identified to be the too strict
commitment of the procedures to plan step orderings and the era of non-linear or partial-order planning
began. We note that, ironically, the fastest planning systems today are in fact linear planners that conduct
a forward state-progression. Sophisticated search techniques have been developed that use solutions for
relaxed problem specifications as a heuristic function [34, 136]1 or allow to define domain-specific control
knowledge [12]. Since these approaches are algorithms solely tailored for speed and not very well formally
based, they are not in our focus.

1Note the subtle difference to introducing a domain-specific search heuristic “manually”.
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While the STRIPS algorithm is nowadays history and numerous successors have surpassed it in terms of
computational performance and manageable application characteristics, its formalism prevailed. Although
the initial STRIPS formalism’s semantics had a number of weaknesses that needed clarification [169], the
representation of actions and states that STRIPS introduced are still used by the community. Although our
approach does not use STRIPS but instead the formally more advanced ADL action language, STRIPS is and
has been the most dominating representation formalism. For example, the current standard language for the
International Planning Competition, PDDL [99], is using an extension2 of STRIPS. We are therefore going to
discuss some of its aspects in more detail.

During their research on solving the robotic control problem, Fikes and Nilsson particularly considered
work in the area of automated theorem proving. At that time, Green had presented an approach to domain-
independent planning that is known as the situation calculus [124]: The world’s state is encoded in first-
order predicate logic such that atoms that represent fluent properties are augmented by a situation parameter.
In this formalism, operators are defined as non-logical axioms that describe how the truth value of atoms
changes in the situations that result from the operator application. Given an axiomatic description of the
initial state, the goal, and the operators, a resolution theorem-prover is then used to produce a constructive
proof that an adequate sequence of state changes exists, and from that proof the corresponding plan is ex-
tracted. Fikes and Nilsson liked the idea of using a general-purpose problem solver, however, they were also
aware of the problems the situation calculus has to face: (1) Using a resolution engine for generating plans
mixes two kinds of search, namely search in the space of world models (that means, constructing candidate
plans) and search for a proof that the plan satisfies the goal. Finding a reasonably well performing proof
strategy that is able to handle both search aspects was regarded to be extremely difficult if not impossible.
(2) The formal specification of operators has to include so-called frame axioms that describe which facts are
not changed by the action; reasoning about these operator invariants became known as the frame problem.
Since any operator typically affects only a small subset of the world’s facts but nonetheless all corresponding
frame axioms have to be proven in the proof of plan existence, it is solving the frame problem that dominates
the computational effort of the procedure.

The solution of Fikes and Nilsson directly addressed the frame problem: the application of operators is
removed from the formal deductive system and first-order theorem proving methods are used only within a
given world model to answer questions about which operators are applicable, and whether or not the goal
has been satisfied. To this end, states are represented by well-formed first-order predicate logic formulae
in clause form, and the operator specification is given a specific structure: the name and parameters of
the operator, the precondition, and the effects. The precondition is an arbitrary formula over the operator
parameters. Determining whether an action is executable is done via a theorem prover that verifies whether
the precondition formula holds in that state. The operator’s effects are given as so-called add and delete
lists: lists of clauses that are to be added to a state and clauses that are to be deleted from it3. All clauses
that are not mentioned explicitly in the delete list are “copied” into the successor state – a simple solution
to the frame problem. It is worth noting that states are interpreted under the closed world assumption, that
means, the state description is assumed to be complete and consequently all atoms that are not present as
positive literals in the state’s clause set are interpreted as false. However, this expressive planning language
was not given a well-defined semantics (see discussion in [169]) and was consequently reduced to action
descriptions that would contain only atoms [209].

1.1.2 Partial-Order Planning

Partial-order planning, also called non-linear planning, started out as an alternative to total-order planning
approaches like STRIPS (for an overview, see [279]). As we have explained above, this research was mainly
motivated by finding solutions for problems with interacting sub-goals like, for example, the Sussman
Anomaly. Sacerdoti was the first to formulate, that although plans are executed one step at a time, the
“plans themselves are not constrained by limitations of linearity” [225]. The NOAH system (Nets Of Action
Hierarchies) introduced a new data structure to represent plans, the so-called “procedural net”, that consists

2The extension is purely syntactic. Although syntactical elements of ADL and several new developments have been added, its seman-
tics are still that of STRIPS.

3In this way, STRIPS is manipulating a state formula where the before mentioned ADL is changing the interpretation. We will revisit
this particular issue later.
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of actions and a partial ordering relation on them with respect to time. Ordering steps between actions are
only introduced when they become necessary due to the goal interaction analysis.

But non-linearity is not the only relevant contribution of NOAH: it also introduced the notion of search in
the space of plans. Fig. 1.3 illustrates the approach and compares it to search in the space of states. The
algorithm basically checks a current plan against three so-called critics, which induce a reordering of plan
steps if a conflict is detected, and the like. Although the technique is quite limited, NOAH can be considered
to be the ancestor of all modern planning systems that are based on search in the space of plans. We note
that our proposed framework will employ a related technique, however formally grounded and considerably
more flexible.

The latest noteworthy approach that is in the direct line of succession of STRIPS is the NONLIN system by
Tate [255]. It completed the step towards plan-space planning as initiated by NOAH: It introduced the nowa-
days commonly used partial plan data structure – that means, plan steps, ordering constraints on the plan
steps, and parameter bindings – and it applied a general backtracking schema over the plan construction
operations. Many previously fixed decision points during plan generation are now considered to be (non-
deterministic) choice points that (a) represent alternative ways of constructing a solution and (b) are subject
to re-consideration if a particular choice turns out to lead to a dead end. NONLIN thereby also finally estab-
lished the notion of least commitment in AI planning, since now all previously discovered anomalies could
be solved. NONLIN was also the first system to record the commitment on causal dependencies between plan
steps via causal links: a triple 〈ap,Q,ac〉 represents the information that action ap is intended to produce
proposition Q for the consumer action ac. Causal links were in particular invented to compensate for the in-
ability to compute complete state descriptions for partially ordered plan steps – plan-space based approaches
do not keep explicit states. Causal links work in two ways: First, they document whether the precondition of
a plan step is completely supported. Unsupported propositions can either be established by adding a causal
link from an appropriate plan step or by adding a new plan step that carries the desired effect. Second, once
the support is established, it can be used to identify negative action interactions efficiently: A causal link is
threatened if there is a plan step that can be consistently ordered between the producer and the consumer
action and that carries the the respective proposition in its negative effects.

Planners that employ the causal link technique are consequently called Partial-Order Causal-Link (POCL)
planners.

An alternative to recording each causal support explicitly is the so-called modal truth criterion, a formalized
criterion for determining whether a partial-order plan achieves a given precondition at a given step [54]. The
criterion can not only be used for verifying plans but also for generating them, and Chapman demonstrated
that with his planner TWEAK. The system uses constraints as its approach to problem solving. The basic
idea is to “define” a plan by incrementally specifying partial constraints it must fit. The search space is
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pruned as constraints are added, until all remaining alternatives satisfy the constraints. This idea is closely
related to the technique called refinement-based planning in which the plan data structure is interpreted as a
specification for the class of all plans that contain the same components.

The modal truth criterion states that for any plan step ac a condition Q holds (more precisely: Q holds in the
state in which ac is to be executed) if and only if Q has been introduced by a step ap that is executed before
ac and for any step ax either ac is executed before ax or ax does not undo Q. In addition, there may also exist
another step aw that re-establishes Q. Regarding the naming, ax is referred to as the “Clobberer” and aw to
as the “White Knight”.

The planning procedure consists of repeatedly choosing a goal and then making a plan to achieve it. It
uses the modal truth criterion to do this; the criterion shows all possible ways a proposition could be made
to necessarily evaluate to “true”; the procedure chooses one of them and modifies the plan accordingly.
Using the modal truth criterion makes the algorithm sound and complete, however at the price of a very
high computational complexity. This in fact caused Chapman and many other researchers to conjecture that
plan-space planning does not scale for more expressive action languages (and TWEAK employed a simple
one).

However, from today’s perspective, the causal link technique solved the issue, basically because Chapman’s
conjecture was based on the misbelief that planning requires a necessary and sufficient truth condition: As
it turned out, a sufficient truth condition is completely adequate. Essentially, POCL-planners only care about
ensuring that a goal condition is true for a specific plan step but they do not reason about the truth values of
arbitrary conditions in arbitrary states. The downside is that incrementally imposing constraints on the plan
may lead to dead ends and the system has to backtrack: POCL algorithms “push the complexity of evaluating
the modal truth criterion into the size of the search space” [279]. It has to be noted that search space size is a
relative measure, since large parts of it become irrelevant once cleverly introduced constraints are violated.
For a discussion of these aspects see [150].

The “Systematic Non-Linear Planner” (SNLP) [177] is an improved formalization of Tate’s NONLIN plan-
ner4. In its conceptual clarity, it is one of the two archetypical algorithms of today for any POCL system that
develops plans in a least commitment fashion: causal links are used to record necessary causal support, plan
steps are partially ordered when actions need to precede each other, and parameter bindings are introduced
on-demand in order to guarantee causal support or to resolve threats. Our framework’s implementation of
partial-order planning is also inspired by the SNLP planner (cf. Sec. 3.2.2).

A particularity of the SNLP approach – an intentional demarcation with respect to NONLIN and its contempo-
raries – is its interpretation of causal threats. Practically all other partial-order planning approaches consider
a plan step at to be a threat to a causal link 〈ap,Q,ac〉 only if at deletes Q (and is not ordered before ap or af-
ter ac). SNLP employs a stronger notion of threat: Plan step at is a threat even if it adds Q. While this notion
of a conflict appears counter-intuitive, it provides the algorithm with an interesting property: systematicity,
that means, no plan is encountered twice in the plan-space. It is however widely believed that this kind of
plan-space reduction is not necessarily relevant for practical implementations. We will discuss these issues
in detail in the chapter that is dedicated to the formal framework, including performance considerations
(Sec. 2.8.5, but also cf. [145]).

The second “standard” partial-order planning algorithm is that of the UCPOP system [214]. Penberthy and
Weld wanted to build a planner that was able to handle a more expressive language than the restrictive STRIPS
representation and to do so without reverting to linear plans. Concerning the domain model language, UCPOP
uses ADL, a language that has been invented by Pednault in the late 80’s [211]. For a detailed discussion
on the ADL representation, we refer the reader to the formal framework section (cf. Sec. 2.8.1), but for now
it is sufficient to note that the key features of ADL covered by UCPOP include universally quantified and
conditional effects; the first two letters in UCPOP refer to this fact. The universal quantification allows effect
statements to refer to the universal base of a world state, for example, when a container object is moved,
everything inside changes its position as well. Conditional effects are intended to provide more compact
operator definitions: if a given effect condition holds, additional effects are established. An equivalent way

4In many surveys, TWEAK is mentioned as SNLP’s predecessor, but McAllester and Rosenblitt explicitly refer in their initial SNLP
paper to the NONLIN procedure.
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Figure 1.4: The head- and tail-plan as it is used in the PRODIGY system.

of modelling is to define a second operator with the effect condition as additional precondition and the
complete effects (including the additional ones).

Besides these technical features UCPOP was the first non-linear planner of that expressivity, and moreover it
was the first non-linear planner for which soundness and completeness were formally proven.

Since UCPOP and SNLP were very well documented and conceptually very clear, they inspired many plan-
ning system designers to build extensions. Successful examples for such an undertaking are the VHPOP
system [297] and REPOP [207]. Based on UCPOP, these planners focus on implementing efficient plan-
ning strategies and evaluating search heuristics. The VHPOP approach in addition incorporates temporally
extended actions (durative actions in PDDL [99]) and participated quite successfully in the International
Planning Competition.

It is worth noting that the issue whether it is an advantage to use a total order on the plan steps rather than
a partial one has never settled. The differences between the two techniques, with a focus on computational
efficiency and the impact of respective planning strategies, is extensively discussed in [191, 192] and [16],
among others.

An interesting linear/non-linear hybrid system is realized in PRODIGY [93]. It combines these contradictory
principles by dividing the plan in two parts that are treated with different methods: In order to achieve the
goals, the usual non-linear plan is built in a least commitment fashion, the so-called tail-plan. The sys-
tem can decide at any time to “commit for execution” those leading steps of the tail-plan that are causally
completely supported by the current initial state by queueing them into a totally ordered sequence of ac-
tions, the head-plan. The linear head-plan is processed by an execution simulator that updates the state
at the end of the head-plan accordingly – this is at the same time an updated initial state for the tail-plan.
Fig. 1.4 illustrates this procedure. The committing of a plan step is thereby an additional plan refinement
operation.

The linear head-plan enables PRODIGY to support a more expressive planning language than STRIPS (dis-
junctive preconditions, etc.) in an efficient manner, while the tail-plan handling provides the completeness
property. Apart from its technical particularities, PRODIGY became famous for its integration with various
machine learning techniques that provided it with efficient planning strategies.

A complete family of planning algorithms and systems has been initiated by GRAPHPLAN [28]. Blum and
Furst divided plan generation in two phases: In the first phase, a planning graph (Fig. 1.5) is constructed
that consists of alternating layers of state facts (propositional atom) and ground actions. All actions that are
applicable due to their preconditions’ facts occuring in the current state layer are placed into the subsequent
action layer, and all facts that are produced by the effects of the actions in an action layer will be present in
the following state layer, and so forth. At the same time, mutually exclusive facts (for example, positive and
negative atom occurrences) are propagated into the next action layer, since actions are mutually exclusive if
their preconditions are. In turn, facts that are generated from mutually exclusive actions become mutually
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Figure 1.5: An example for the development of a GRAPHPLAN planning graph. State layer F0 denotes
the initial state. We assume that according to the deployed domain model, the planning graph
reaches non-mutex goal facts (in green ellipses) in the fourth state layer F3. Plan extraction is
performed in a bottom up manner: the plan ends with actions from the preceding action layers
that contributed to the goal facts, which activates these actions’ precondition facts, and so on.

exclusive themselves, and so on. In addition, actions with contradicting preconditions and effects (cf. causal
threats) are also marked mutually exclusive. The planning graph is generated in this way, until all facts of
the defined goal state are present and un-marked in a fact layer. This graph represents a disjunctive set of
maximum parallel plans and serves as a heuristic for the subsequent phase: the plan extraction. Beginning
from the goal facts, the producing actions are determined, the facts that support these actions, their producing
actions, etc. The complexity lies in this second phase, because it is a combinatorial problem to choose the
appropriate path back to the initial fact layer (it is in general ambiguous). Note that a maximum parallel plan
does not necessarily exist and planning graph generation has to be continued. For a more detailed treatment
of the algorithms and related approaches see [280].

Much has been conjectured about where its efficiency comes from and under which conditions the system
works fast or performs badly. We believe that GRAPHPLAN is a bad example for interleaving search and
plan-generation, because apparently it makes the algorithm difficult to analyze, to understand, and to extend.
Great efforts have been made to make GRAPHPLAN a temporal planner, to include resource reasoning,
uncertainty, and the like. But to our knowledge, due to the fact that these extension mostly stem on re-
interpreting the planning graph structure, they are conceptually mutually incompatible or at least impair
GRAPHPLAN’s efficiency.

1.1.3 Hierarchical Planning

The primary problem of the planning techniques that have been discussed so far is that of scalability: The
complexity of planning problems is typically located at the borderline to an exponential effort (at best) and
may escalate with any additional representational feature. Furthermore, the more actions and state prop-
erties are defined, the more difficult becomes plan generation, and domain model maintenance in general.
These observations motivated the use of abstraction mechanisms in planning, which can be divided into two
categories: approaches that use abstraction for the representation and reasoning about states, and approaches
that impose abstraction hierarchies on the actions (cf. [292] and [6, Chap. 4]).
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Planning by State Abstraction

The principle of state abstraction has been invented very early as one form of giving more structure to plan-
ning goals, it has therefore many facets and technical approaches. The probably first approach was realized
in the ABSTRIPS system [224], that is still discussed today and, although it performs linear hierarchical
planning, has influenced many modern planners. Classical state abstraction works by focusing on certain
sets of preconditions and effects, thereby defining so-called criticality levels for each of which the system
plans in the above described STRIPS-like manner. Starting from the lowest criticality level, when a plan for
one level has been obtained, the system moves on to the next level and tries to fill the revealed gaps in the
plan. If the plan cannot be completed into a solution, ABSTRIPS backtracks over the last criticality level.
If the criticality is carefully assigned, a tremendous increase of performance is gained, if not, search is of
course completely lost.

Since criticality values have such a big influence on the system behaviour on the one side, but are not al-
ways intuitively (and successfully) identifiably, the ALPINE approach proposes to automatically infer these
levels from the operator definitions [153]. In doing so it builds abstraction hierarchies that comply with
the ordered monotonicity property, that means, the detailed action levels do not interfere with the con-
ditions established on the more abstract levels. Similar work in the context of non-linear planning has
been done by Yang in the ABTWEAK planner [294]. It uses effect abstraction by distinguishing primary
and side effects, and only allows reductions that do not introduce new threads to established precondi-
tions, which is called monotonic protection. In any other aspect, the system works exactly like its ancestor
TWEAK.

The obvious idea behind these systems is that abstraction might speed up the planning process, even if it
is computationally hard to find a good abstraction hierarchy. Another appealing factor stems from state
abstraction not working at the control level; as a consequence, it can be easily combined with other search
techniques and heuristics. One of the drawbacks, for example, is noted by Giunchiglia in [121]: We can con-
struct example cases with poor performance of abstraction planners, in a way that higher abstraction spaces
contain no information about what caused backtracking at less abstract levels.

The underlying problem of the presented state abstraction methods is apparently a lack of semantics, because
they are defined in terms of the search algorithm and are not reflected in the modelled domain as such. In
general, the lowest criticality is typically assigned to rigid symbols, that means, to the static facts of the
world. This makes perfectly sense, but higher levels do not express a hierarchy on “rigidness”, they are
rather classified into symbols of primary effects versus side effects. We believe that it is not very rational to
assume that this classification can be constructed meaningfully and consistently in general. A reduced state
description can be seen as an abstraction, but without further semantics, these reduction schemata do not
necessarily build a hierarchy in the state space in a reasonable manner.

Planning by Action Abstraction

Action abstraction starts with a very simple idea: Why tediously synthesizing action sequences for the same
kind of goals over and over again, when knowledge about how to achieve a particular goal is available? The
basic approach is consequently to define plan fragments for specific tasks (abstract actions) in the domain
model that are intended to implement the task in a plan. Instead of finding a course of action that produces
specified state properties, the problem definition in this paradigm consists of an initial state description and
an initial plan. This plan contains a number of abstract tasks that are to be performed in the given initial state,
and the corresponding solution is a completely implemented plan that is obtained from the initial plan and
that is executable in the initial state. The implementing plan fragments are usually lifted or parametrized
according to the parameters of the task, which makes the domain models more flexible. Since the plan
fragments typically contain further abstract actions, substitution has to be performed recursively. For that
reason, this kind of hierarchical planners generally works on the plan-space, where causal interactions can
be finally sorted out by POCL techniques. The substitution step is called expansion or decomposition of
the abstract task and it induces a corresponding hierarchy on the actions of the domain model such that
the actions in the decomposition are considered less abstract than the substituted task. In general, there is
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Figure 1.6: Planning with action abstraction: decomposition of abstract tasks.

more than one expansion provided for a task, that is to say, – in terms of plan-space planning – alterna-
tive decomposition refinements are available. Fig. 1.6 illustrates plan generation using action abstraction.

Over the years, planning via action abstraction has been subsumed under the label Hierarchical Task Net-
work (HTN) panning. The approach was so successful that all but one of the planning applications that we
listed at the beginning of this section (pp. 4) have in fact been realized with HTN planning systems. In the
HTN literature, the domain model includes so-called methods, which relate abstract tasks with appropriate
decomposition task networks and necessary parameter bindings, etc. (these data structures correspond to
partial-order plans). The first systems that implemented action abstraction, including the above discussed
NOAH [225] and NONLIN [255], were mainly focused on a procedural way of plan generation that allowed
the planning system to introduce large sub-plans within one single decision. We believe that this view on
HTN methods as rules of a grammar for intended solutions, that this relatively small amount of information
that is carried by the decomposition schemata per se is the reason why, for a long time, no clear semantics
was given to the decomposition process. Abstract action schemata do not bear preconditions or effects,
because the intended procedure appears to successively expand all abstract tasks first, and then to deal with
causal interactions, executability, etc.,

The O-PLAN system of the Artificial Intelligence Applications Institute of the University of Edinburgh [65,
261] is a direct successor of NONLIN. It is not only one of the most famous HTN planners, but also one of the
most successful and industrially exploited implementation of AI planning technology so far [259,260,262].
It is characterized by many application-oriented features; for example, the software framework has a strong
focus on inter-operability of the platform and the representation language is equipped with a number of
application-motivated domain specification features like typed conditions.

Abstract tasks in O-PLAN do not carry preconditions and effects [65]. In order to compensate for this,
the system relates conditions of primitive operators over different abstraction levels in the plan generation
process by introducing condition types in the abstract expansion schemata [258]. These are constraints,
similar to causal links, that annotate how conditions for the tasks in the expansion are intended to be
achieved. This information has two dimensions: (a) whether the condition is a product of the effect of
some task that is inside or outside the current expansion network and (b) whether the condition is intro-
duced at the current plan generation level, above, or below. Unfortunately, techniques like condition types
are not very well semantically grounded; they require the domain encoder to structure the task hierarchy
very carefully as its pruning affects the system’s search space structure rather than the structure of the plan
space.

A similar approach to HTN planning has been realized in SIPE [281] and SIPE-2 [282], the SRI-bred brother
of O-PLAN. The development was driven by the intention to realize a “practical” system in the context
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of command and control scenarios (the system’s acronym stands for “System for Interactive Planning and
Execution”). Its applications range from military operations [284] to emergency response management in
cases of marine oil spills [2]. Like O-PLAN, the SIPE system also employs a number of special-purpose
domain model constructs that are not backed by an adequate semantic concept (goal-ordering heuristics
inside operator definitions, and the like).

One of the latest directions in the HTN paradigm is represented by the “Simple Hierarchical Ordered Plan-
ner” SHOP [200]. This approach proposes an ordered task decomposition mechanism that uses if-then-else
cascades in its method selection. The main idea is to construct the plan according to the order in which its
operators are later executed, that means, SHOP is basically a state-based forward-chaining search algorithm.
In order to do so, the SHOP decomposition procedure chooses the first abstract task that occurs according to
the step ordering. Concerning the task expansion, the appropriate method is queried and the first decompo-
sition for which the respective if-statement evaluates to “true” is selected for expanding the task. It has to be
noted that all execution requirements for operators are intended to be modelled via the method application
statements and primitive operators consequently do not have a precondition. By working on a linear ordering
on the plan steps (see the discussion of linear planning above) the system is able to compute complete state
descriptions, starting from the initial state. SHOP can therefore employ a highly expressive modelling lan-
guage and even supports the complete Lisp functionality in its method-queries, including arbitrary numeric
calculations.

The ordered task decomposition however requires a specific way of modelling: where linear planners syn-
thesize action sequences in the described manner, an HTN system has analogously to be provided with
linear-ordered expansion networks in the domain model. Although this requirement is not too restrictive in
many cases – there exist numerous examples in which task networks are in fact defined linear – it occurs
as a major restriction in practically every realistic application domain. The developers met the criticism
regarding their linearity assumption with a modified system, called M-SHOP [201], which can handle plan-
ning problems with parallel goal tasks in the initial task network. There may exist realistic domains that
meet this partial linearity property, but many, for instance crisis management, do not because task execu-
tion itself is highly distributed and the execution order for most tasks is not known in advance. The latest
development in this series is SHOP2 [199,202] that allows non-linearity for both problem specifications and
expansion networks. Over the versions, the authors have re-introduced the usual non-determinism that is
central to non-linear planning: SHOP2 “guesses” the missing ordering relations and from there, it explores
the state space in the SHOP manner. The coverage of failed options in the non-determinism is addressed with
a standard backtracking method.

A considerable problem with all the HTN planners we have presented so far is that of incorporating knowl-
edge that belongs to the search-level into the model specification. Let us briefly discuss the main arguments,
we will expatiate on some of the issues in a later section dedicated to the design of these classical strategies
(Sec. 4.2.2).

As said before, one motivation of employing HTN techniques is to obtain a considerably better system per-
formance. And indeed, if the HTN system is guided adequately, it can produce very large plans (that means,
plans containing many plan steps) for comparatively expressive modelling languages in a small amount of
computation time. However, the issue of strategic guidance is not automatically settled merely by employ-
ing abstract action decompositions; in fact, search in the space of decompositions is only a relocation of
the POCL-related issues of selecting the appropriate goal, the appropriate conflict resolution, etc. The un-
derlying problem is that the alternative task implementations will typically interact on the concrete operator
level, but this interaction is in general not visible at the decision point of the expansion. This is, on the one
hand, due to a lack of semantics and appropriate annotations, and on the other hand an in-depth analysis
would nullify the gain of performance, because it is essentially computationally as hard as planning from
scratch.

In order to address the problem of providing an effective search strategy, O-PLAN, SIPE, and SHOP enrich
their domain model representation with more or less explicit search-control directives. O-PLAN uses typed
conditions in order to provide the current implementation level with information about the intended causal
structure, thereby anticipating what kind of commitments the system is going to make – this becomes ap-
parent in particular for the annotation that describes the level of plan generation that the modeler intends to
introduce the condition. The SIPE-2 modelling language contains a large number of search-related features,
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for example, elements that provide for a discriminative treatment of operator preconditions that are on the
one hand used for matching purposes only and on the other hand goals that are intended to be achieved ac-
tively [283]. Last, but not least, the SHOP system has been designed to include so much domain-dependent
heuristics in its expansion methods that many people consider a problem-solving programming language
rather than a planner.

Although we argue for taking advantage of procedural knowledge wherever this is possible, we firmly be-
lieve that the above mentioned ways of explicitly shaping the search tree are counterproductive. The prob-
lems begin with semantic issues, for example, what the precise connection between the plan generation
process and the modelled domain is (this criticism also includes SHOP). Some parts of the domain knowl-
edge are explicitly represented – that is what used to be the key aspect of planning – some parts are implicitly
hidden in search heuristics: thus it remains unclear whether a path in the search space is excluded by the
domain model because it does not lead to a legal solution or because for some other reason there is pre-
sumably no solution. But this dilemma continues up to the very fundamental question what consistency
for such domain models means and how it can be verified. The latter would involve checking for consis-
tent operator specifications, verifying whether implementations are executable, analyzing whether method
applicability conditions guarantee termination on recursive method definitions, and so on. Last, but not
least, any change to the search algorithm puts the functioning of the planning application on that domain at
risk.

The practical implications are obviously the following: domain models are harder to develop, harder to de-
bug, and finally harder to maintain, extend, and re-use. For instance, in the AIPS 2000 planning competition,
“the SHOP team was developing domain descriptions for SHOP purely by hand, and made some mistakes in
writing two of the domains. Thus SHOP found incorrect solutions for some of the problems in those domains,
so the judges disqualified SHOP from those domains” [199]. We would like to add that it is not clear in this
case what kind of alternative to a “handmade” domain model can be provided. Any tool-support will face
the difficulty of including the planning-system specific knowledge in order to detect modelling errors – we
believe this is not very realistic to pursue (we are not aware of any existing tool).

We conclude this discussion with an appeal for purely declarative domain models, at least for domain-
independent planning. As efficiency improving strategic model components may be, we believe that there
is enough practical evidence in other fields that cast them into doubt: The success of constraint satisfaction
techniques in problem solving, as well as the renunciation of programming methods that are tightly coupled
with specific compiler settings (that is to say: standardization of programming languages, reflection on their
semantics) have shown the great advantages of decoupling models from solvers and execution environments.
Planning should always adhere to this principle.

The practical oriented attitude towards action abstraction, namely using decomposition as a macro-definition
for un-expensively pumping steps into the plan, has dominated the field for many years. But there is much
more to HTN planning, and the theoretical side of it has been described and analyzed first by Kutluhan Erol
[83]. He defined the first semantics for HTN planning and examined its expressiveness.

The reader may have noticed that we introduced the term task for referring to abstract actions. In fact, a task
is more than only an action for which a set of decompositions exist: it is at same time a plan step and a goal.
This small particularity was of course also known to the HTN pioneers, they did however not appear to have
a very precise idea what the consequences are: a fundamental change to the way of generating plans, namely
addressing the planning problem by a problem reduction search, rather than state space search. Hand in hand
with that notion goes a tremendous increase of expressiveness of the underlying planning formalism. This
can be proved by reducing the classes of plans that can be generated by a formalism to classes of grammars:
In this view, action-based planning is analogous to right-linear (regular) grammars while HTN planning is
analogous to context-free grammars [84]. There has also been some work that projected HTN planning into
a general refinement-based planning framework and analyzed its behaviour in comparison to partial-order
planning [146].

A simple example that demonstrates the limited expressiveness of action-based planning is the following:
Try to plan a round-trip transportation such that the leg of the trip from X to Y always uses the same carrier
as the leg of the trip from Y to X . An HTN specification of that problem can be modelled by an initial task
network in which the legs of the intended trip are represented by appropriate movement tasks and the carriers
are assigned by respective parameter bindings. In order to make this problem solvable by a non-hierarchical
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approach, the outlined domain model has to be supplemented by artificial operators and conditions. The
need for the additional information arises from the state-centered view: In the goal state of the round-trip,
the acting entity is in the same location where it started from. Hence, every location on the round-trip has
to be represented by an artificial property that encodes whether or not the location has been visited before.
From that we get a modified goal state: having visited every location and being “again” in the starting-
location. However, this still does not capture the notion of the concept “trip”, that means, location X has to
be visited before location Y and again vice versa on the way back. In the end, additional state features have
to be introduced that encode the location (sub-) sequences that are to be visited and some more that ensure
a consistent binding of the carrier. It can be shown that these extensions lead to an exponential blow-up in
the domain model size and accordingly increase the effort for finding a plan.

In compliance with his theoretical considerations, Erol and his colleagues developed UMCP, a fairly puristic
implementation of planning by task decomposition that is commonly considered the reference implemen-
tation for the HTN paradigm [85]. It uses ordinary STRIPS-style operators for modelling primitive actions,
while abstract tasks do not carry preconditions and effects. Task networks consist of plan steps, ordering
constraints on the steps, and variable equations. In addition, there are constraints that model causality: con-
ditions can be requested to be true at the beginning of a task, at the end of a task, and between two plan
steps. Method selection is done non-deterministically, that means, it is a matter of the search strategy to
choose the appropriate one. After a decomposition step, the newly introduced constraints are propagated
into the existing plan, until that plan becomes completely primitive. In that case, the pre- and postconditions
of the operators are analyzed for causal conflicts and an executable plan is extracted. If that cannot be done
or the constraint sets become inconsistent before the primitive level is reached, the system backtracks over
previous expansions.

The conceptually clear separation of search-related issues from the declarative domain model representation
enabled experiments with different refinement strategies in the UMCP system. We will discuss some of them
later in a chapter dedicated to planning strategies.

As an interesting side note, the discussion about knowledge-intensive domain models versus light-weight
models has been kept alive ever since. In particular this dispute persists between the traditional knowledge-
rich HTN-endorsers and the non-hierarchical planner developers (cf. [285] and some arguments in [146]).
The typical criticism on HTN planning is that procedural knowledge is regarded “cheating” because it is
not the machine that designs the course of action, and that formalizing such an amount of knowledge about
an application domain is not realistic (too many interviews, unclear knowledge engineering process, etc.).
It is also a topic for supporters of models with a strong notion of causality versus workflow management
researchers, for example, in the field of service construction. Be that as it may, we believe that the preceding
sections made clear that procedural, respectively hierarchical knowledge is valuable and an adequate means
of representation in many application areas.

1.1.4 Hybrid Planning

Our understanding of “hybrid planning” is the combination of planning with procedural information, as
performed by the HTN approaches, with action-based techniques like those provided by partial-order plan-
ning. This combination turned out to be most appropriate for complex real-world planning applications,
including scenarios like crisis management support [26, 44] and the like. In the hybrid paradigm, the solu-
tion of planning problems often requires the integration of planning from first principles with the utilization
of predefined plans to perform certain complex tasks. Experiences in developing real-world, fielded plan-
ning systems at the Jet Propulsion Laboratory led to the conclusion that it adds the strengths of both, at
the same time softening their weak points. This is evinced in both modelling and search efficiency is-
sues [87, 88].

As for the modelling process, task networks of HTN planning represent hierarchy and in some cases mod-
ularity more naturally than plain operator-based models do. This enables the user to represent domains in
an object-oriented form (including object type hierarchies) that is easier to write and reason about. Decom-
position rules can refer to either low- or high-level forms of a particular object or goal, as the information
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Figure 1.7: An example for the treatment of exceptions in HTN planning models. It may result in over-
specified methods.

pertaining to specific entities is contained in smaller, more specialized rules. The drawback of an “HTN-
only” technique is that inter-modular constraints cannot be represented adequately [87], that means, ex-
ceptions or special cases in action execution,because they typically lead to overly specified reduction rules.
This becomes evident in the situation from a disaster relief scenario depicted in Fig. 1.7, where classical
hierarchical task network planners need to provide expansion schemata for every combination of support
tasks to be included in the relocation task: In some cases, a unit just moves to its destination, in others it
has to be fuelled in advance, or it has to move to a fuel depot first and can then be fuelled, and so forth.

Operator-based techniques can help encoding implicit constraints by preconditions and effects of actions.
Therefore, their kind of plan refinement is more general and provides more compact representations. In
the example above, the movement task would just carry preconditions to ensure that the unit is fuelled and
manned, and if these cannot be satisfied in the decomposition of the relocation, the necessary tasks are
inserted in the plan in the fashion of partial order planning. In addition to the flexibility in model representa-
tion, these techniques provide an early detection of inconsistencies at abstract plan levels together with the
means for resolving such conflicts. But when relying solely on atomic operators, certain aspects become
difficult to represent as we have seen in the previous discussion on the expressiveness of HTN planning. The
advantages of a natural mixed domain knowledge representation are obvious, although difficult to evaluate
quantitatively:

“[it is] easier to encode the initial knowledge base, fewer encoding errors occur [. . . ], and
maintenance of the knowledge base is considerably easier.” [87]

Such hybrid systems had been watched suspiciously a long time, because the planning paradigms were
considered to be antithetic such that no algorithmic procedure can implement both at the same time. As
we have mentioned before, this was mainly a result of conceiving HTN planning as a procedure for the
systematic unfolding of rules in a grammar that describes solutions, which is incompatible with producing
exceptions to that solution language by introducing “terminal symbols” on demand. However, new AI
textbooks present this method in the style of state abstraction planning in [294], that means, the abstract tasks
carry preconditions and effects from a subset of the less abstract tasks. Yang suggests to keep hierarchical
models restricted in such a way, that in every reduction schema there is exactly one task carrying the main
effects of the network and hence those of the associated abstract task [292]. In such domains the downward
solution property (all consistent abstract solutions can be refined into consistent primitive solutions) holds
as a basis for effective search space reduction. A similar approach is presented by Russell and Norvig,
who allow the distribution of conjuncts of conditions among the sub-tasks of the decomposition network
[223].

One of the very few documented hybrid systems is DPOCL [298]. It decomposes abstract tasks into networks
with additional initial and final steps, which carry the conditions of the abstract tasks (this corresponds
to the approach of Yang). Some of the techniques used in this context raise the crucial question of user
intent. The system prunes unused steps and takes condition establishers from every level of abstraction,
even from sub-tasks of potential establishers. The problem of when to insert new tasks and where to solely
use decomposition rules is very hard to solve because it partly depends on the modeler’s intention. Our
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proposed solution is to leave it to the user whether or not new tasks are allowed to be inserted for goal
achievement. Moreover, premature insertion of new tasks may lead to non-optimal long plans, but we
postpone this problem for this time as a matter of in this sense “good” search strategies, like it is solved for
classical state-based nonlinear planners – but of course it has to be tackled in the future (cf. Sec. 3.3.1 and
6.6.4).

Another fielded hybrid planning system is the “Deep Space Network (DSN) Antenna Operations Plan-
ner” DPLAN, developed at JPL [58]. It automatically generates tracking plans for a set of highly sensi-
tive radio science and telecommunications antennas. DPLAN accepts as input an equipment configuration
and a set of requested antenna track services. The system then uses a knowledge base of antenna opera-
tion procedures to generate a plan of activities that will provide the requested services using the allocated
equipment. The procedures are connected and extricated from negative interactions by action-based tech-
niques.

More closely related to our approach is the work of Kambhampati [149]. It integrates HTN planning in a
general framework for refinement planning, thereby making use of operator-based techniques. This unified
view is intended to prepare the use of recent progress in planning algorithms, for example, by giving proposi-
tional encodings for SAT based planners [173]. In this view of hybrid planning, the algorithm uses reduction
schemata if available and primitive actions otherwise. Causal interaction is analyzed at the abstract level as
well and refined by mapping conditions and effects of abstract tasks onto conditions and effects in their
sub-tasks. Abstract conditions are closed by phantom establishers that are to be identified at a later stage of
plan development. Conflict detection and resolution can only be done at the primitive level, as in contrast
to our methodology there is no “vertical” link between causalities in the different levels of abstraction (cf.
our use of axiomatic knowledge, p. 34). Kambhampati addresses user intent by defining a subset of abstract
effects explicitly for condition establishment, and by explicitly representing the incompleteness of schema
definitions. For the latter, a specific predicate prevents insertion of new steps.

We believe, that it is not necessary to classify effects or conditions of abstract tasks as primary and side like
it is done in nearly all of the presented systems, because we assume that the domain modeler encodes this
information by actually building the task hierarchy including our approach to specify abstract conditions. In
our view, abstract tasks carry primary effects only, while side effects are the additional effects introduced by
their expansions.

Exploiting object hierarchies for action abstraction is a comparatively new technique in planning and rarely
used. The main advantages are that it is based on an established modelling paradigm with more or less clear
semantics, as well as that it supports reasonable commitment strategy along object components. Semantic
foundations for such object oriented approaches can be found in the literature, ranging form reasoning
about object database models in the style of terminological logics [40] to specification oriented work [237].
For example, the approach described in [96] uses plans as object methods for an hybrid reactive robot
controller. Incoming percepts are mapped on partially specified object templates as plan selection criteria.
Although this it is not applied to plan generation in the strict sense, the involved reasoning is close to
precondition reasoning from a technical point of view. But there has also been some work more central to
the field.

An approach that is based on a well-founded semantic concept is that of object centered planning [183]. The
corresponding Object Centered Language formalizes plan generation in terms of object oriented concepts
and basically grounds operator definitions in state transitions of the involved objects. In this paradigm,
objects are categorized into static and dynamic sorts, and each instance of a dynamic sort has its own local
state that is defined by a set of predicates, the so-called sub-state. Reversely, these predicates are owned
by exactly one sort, the key attribute of the predicate, thereby becoming static or dynamic themselves.
For all sorts in the domain model, the legal local states are specified. Transitions over these legal states
constitute state automata that specify the behaviour of the objects of that sort. Operator definitions are
consequently derived from the state automata of the involved, that is to say, manipulated objects. Building a
plan in this approach basically consists of re-constructing the necessary (local) state transitions and indirectly
identifying the operators that are responsible for the specified change.

McCluskey’s OCLh [180] extends the object centered formalism to action abstraction by introducing a sort
hierarchy, in which dynamic predicates are inherited from super-sorts. So-called guards play the role of
pre- and postconditions of object-transition sequences that constitute the semantics for abstract tasks. The
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Figure 1.8: An example for an HYBIS agent hierarchy (taken from [44]).

planning algorithm for making this framework operational repeats an expand-then-make-sound cycle (EMS):
for each abstract action in the current plan one expansion is performed and then the network and its induced
state transition sequences are validated against the sub-state specifications. Any potential inconsistencies are
repaired, if possible (which corresponds to threat resolution in POCL planning).

The EMS system appears to address a number of important requirements: It has a clear and simple semantic
concept, it allows for a formal specification of the action hierarchy and task decomposition, and it seems
to perform reasonably well. But although there are application domains for which state automata are most
adequate models, for instance technical environments, we feel that for human oriented applications they are
not. These domains are naturally activity centered and not object centered. Furthermore, we are intending
to extend the concept of abstraction not only on objects but also on state features themselves, and this is not
supported in OCLh. It is also not clear how to extend this formalism to richer representation features like
resources, etc. We finally note that we understand that the object-centered formalization overly restricts the
strategic options by being tied to the expand-then-make-sound algorithm. We will deal with this particular
strategy in later chapters.

The concept of using object-oriented knowledge in task decomposition is also followed in the HTN system
HYBIS [44,46]. The originality of this approach lies in its view on the application domain as being composed
of a hierarchy of action performing agents. An agent is represented by a set of state variables and an
automaton that describes its behaviour. The transitions of this automaton are the actions the agent can
execute (note the difference to OCLh, where actions are derived from multiple state automata). A domain
model consists of a compositional hierarchy of agents, that means, that higher level agents are aggregations
of lower level agents. While agents at leaf nodes of the hierarchy correspond to real world entities that
are able to act, aggregating agents represent abstractions thereof. Their abstract behaviour is related to
that of lower levels via an interface and an articulation function that translates abstract actions into their
refinements.

Fig. 1.8 shows an example for a compositional agent hierarchy (upper left corner): the root concept is an
autonomous robot, the Mars Rover, that can execute three compound actions. On this level of abstraction,
the platform can “go” from the home base to a target location, in that state it can “pick” up an object,
and finally it “returns” to the home base. The Rover is composed by two primitive agents: a “motor” and
a “gripper”. Both can perform the lower-level actions of activating and stopping the engine, respectively
opening and closing the hand of the manipulator arm. The relationship between properties of the Rover
and its components are defined in appropriate interfaces, for example, the location of the motor platform is
the same as that of the whole Rover. Typically, not all state properties do have a direct correspondence in
the next abstraction level in terms of literals and are therefore preserved for lower levels. Hence, the ap-
proach is implementing in this way a knowledge transformation in contrast to the discussed state-abstraction
methods.

The algorithm starts with an initial plan specification and proceeds down the agent abstraction levels. For
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each step in a plan at a given abstraction level, the sub-agents’ action repertoire is used to construct a plan
fragment that achieves the same goals (modulo interface translation) in the plan for the next abstraction
level. The system thereby keeps track of the current plan’s (causal) consistency, also taking into account
the component agents’ state automata. In order to preserve causal commitment during decompositions, the
HYBIS approach introduces hybrid causal links that represent commitment between two levels of abstraction.
For example, the abstract “go” in Fig. 1.8 establishes the location of the Rover for the “pick” action. After
a translation of the abstract movement into more concrete actions that are carried out by the motor agent,
causality is temporarily restored by identifying the translated effect in the motor state with a hybrid causal
link. When finally the “pick” action is taken up by the actions of the gripper agent, the system is able to
introduce the final (classical) causal link. Note that this kind of expansions differ significantly from the
usual HTN methods, since the expansion networks are not user-defined but generated during run-time on
demand.

The HYBIS approach is an interesting alternative to the OCLh framework, since it enables a declarative
specification that is based in the commonly used automaton representation and is at the same time action-
centered. Like it is the case for the other object-oriented approaches, the formalism is however mainly
intended for technical environments. HYBIS is, for instance, explicitly targeted on production planning,
where the agent-composition metaphor is highly adequate. In many other scenarios the identification of
agents and their components is rather artificial and leads to flat compositional hierarchies, which undermines
the application of the divide-and-conquer principle and therefore compromises the efficiency of the approach
significantly.

A second drawback of the approach is that it is fixed with respect to its level-wise decomposition strategy.
Although there is no mingling of procedural domain knowledge and search-related information, the domain
model and the search algorithm depend indirectly upon each other via the construction of the composition-
hierarchy layers. This hampers model development, maintenance, and reuse, although to a much lesser
extent than it can be observed in other approaches.

Recent developments investigate into combining the two paradigms by simply assembling an HTN and a
non-hierarchical plan synthesizing system within a coordinating algorithmic frame [110]. According to the
goal type, the hierarchical planning system is thereby called for reducing abstract actions into primitive plans
and the non-hierarchical planner is responsible for synthesizing action sequences that satisfy the state-based
goal conditions. These kind of approaches are however not in our focus, since they do not employ coherent
universal semantics for all involved components.

1.1.5 Other Planning Techniques

In this section, we want to give a brief overview over a set of research directions that are currently pursued
in the field of AI planning and that have a high potential regarding integration efforts. We begin with
two formal, very general problem solving techniques that are successfully employed for plan generation:
theorem proving and SAT solving.

In the above section on classical planning we have mentioned the situation calculus [124]. A first-order
predicate-logic language is employed for representing states and state changes. An essential technical ele-
ment of this formalization is the notion of explicit situations, which are added as a state parameter to every
state-dependent, flexible atom, and the notion of actions as state changing functions. Two aspects are thereby
specified in this calculus: effect axioms and frame axioms [179]. Effect axioms define the state change in-
duced by an action, and the respective frame axioms specify what aspects of a state are not affected by it and
therefore persist. Planning is performed by proving a plan specification from the axioms, which is essen-
tially an existentially quantified formula that claims the existence of a goal situation in which, given an initial
situation, a specified goal condition holds. If a constructive proof can be found, the generating terms of the
concrete goal situation can be extracted, that means, the sequence of action terms that contribute to the goal
state can be identified. To this end, Green and his colleagues McCarthy and Hayes used a dedicated answer
literal for accessing the goal situation substitution in a resolution calculus proof.

Although this approach has been first published 40 years ago, it still influences today’s view on planning
and in particular that of planning by deduction. For a review of deduction-based planning, see [22], among
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others. The main advantage of these techniques lies in the precise semantics of consistent domain models
and the underlying calculi. A formal specification describes the domain model in a declarative and modular
manner, which gives the means to a systematical (and tool-supported) modelling [27]. It is even possible to
formulate, for instance, safety conditions against which the domain model can be verified. The employed
logic is thereby decisive for the expressive power of the domain models, the available options with respect
to the usable reasoning techniques, and of course the computational complexity of the procedure. Many
formalisms have been examined, ranging from dynamic logic to temporal logic and logic programming
(Golog).

The operational software for deductive planning systems is typically a general automatic theorem prover,
which has not been specifically designed for the task of planning. Although the structure of the proof space
obviously depends on the specifics of plan generation in general and on the problem and domain specification
in particular, these dependencies is hard to formalize and to exploit, because a logical proof has no clear
relation to the structure of the plan it represents (which makes it hard to benefit from the experience in other
fields of planning). Formulating adequate proof tactics for the chosen domain description language is hence
a central research topic in this area.

With the availability of very efficient SAT solvers, formulating planning problems as satisfiability problems
turned out to be a successful compromise between reduced expressiveness and computational performance
[151]. Planning as satisfiability is basically a process that involves three steps: First, the problem and
domain specifications are translated into a propositional formula. Fully grounded operators are encoded in
propositional axioms that do not only describe the precondition and effects but also the discrete time point
at which the operator is potentially executed. For example, there is a proposition for executing operator x at
time t, with t ranging over the temporal planning horizon, together with implications like “if x is executed
in t, its precondition must hold in t and its effects will hold in t + 1”. Every ground atom that is built in
this way, is interpreted as a propositional variable. Since every ground instance of an operator has to be
represented by a variable, the number of variables is in the order of the product of the number of schemata,
domain objects, parameters per operator, and finally the expected length of the plan. The main efficiency
gain for this technology lies in a concise translation. In a second step, a model is constructed that satisfies
the generated formula; this is where standard SAT techniques are applicable. As the third and last step,
the plan is extracted from the generated model by collecting the “operator executing” variables that have
been set to the value “true”. For more details on SAT-based planning we refer the reader to the review
in [280].

This development lately culminated in the BLACKBOX system [152]. In this approach, STRIPS-style problem
specifications are first converted into Boolean satisfiability problems, and then these problems are solved
with a variety of state-of-the-art SAT-solver engines. Its efficiency is based on two techniques: It employs
the GRAPHPLAN planning system (see above) in a preprocessing step for determining the mutual exclusive
actions over the time horizon: From that information, a strongly reduced propositional encoding is obtained.
Second, it can change the SAT solver during search; for example, if after a given amount of computation time
this subsystem has not produced a result, another solver is activated. This gives BLACKBOX the capability
of functioning efficiently over a broad range of problems and it also gave the system its name because the
plan generator knows nothing about the SAT solvers, and the SAT solvers know nothing about plans: each
is a “black box” to the other.

There exists also an approach on applying SAT techniques on encodings of hierarchical models [173] but
we are not aware of any subsequent work on these preliminary findings.

Another direction of research that has been inspired by formal methods is planning based on model checking.
The planning domain is represented as a non-deterministic state transition system, hence these approaches
address planning problems that deal with uncertainty of various kinds: non-determinism, partial observ-
ability, and extended goals (a goal has to be achieved necessarily, eventually, at least in some cases, etc.).
Our interests are however more focused on formalisms that support abstraction and resource reasoning,
preferably in a more natural, human readable way.

HTN planning has some motivation of capturing best practice of an application domain and encoding it in the
planning model. A similar motivation have case-based techniques: A database of problems and solutions is
maintained such that if a new problem is encountered, the solution to a similar problem can be retrieved and
then adapted to the new problem. The rationale is to benefit from experience. We have mentioned before the
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Figure 1.9: A simple scheduling problem.

HACKER system [253] that re-uses plans in a library, if possible. More advanced case-based planners, for
instance CHEF [127] and DIAL [167], are very popular in domains where domain knowledge, respectively
a solution quality metric is missing. In this context, we distinguish “solutions” and “solutions that are
accepted by users”. From a technical point of view, the main characteristic of case-based approaches is that
they realize the transformational planning paradigm. Practically all presented HTN and POCL approaches
implement a constructive refinement planning method, in which information is only added to the current
plan. Transformational planning can remove choices and is typically realized as a local search in the plan
space.

1.2 AI Scheduling in a Nutshell

As it has been mentioned in the introductory section, scheduling is the process of reasoning about how a
given set of actions can be performed using a limited number of resources in a limited amount of time.
The term “resource” thereby denotes any object or (typically consumable) substance that induces some
constraint on the actions that use it because of its cost or available quantity. The objective of scheduling
is to generate a schedule, that means, to assign resources and time-points or -windows to actions for given
temporal and resource constraints. The constraints impose restrictions on the choice an action has between
several alternative resources or time assignments: A solution schedule has to meet a deadline, has to take
into account a predefined ordering of the actions, has to consider the availability of resources, and the
like.

Fig. 1.9 depicts a simple scheduling problem: Actions 1-5 and 5-9 are ordered by precedence constraints,
actions 3 and 7 are pre-assigned to resource 1, actions 5 and 9 to resource 2. The problem has defined release
dates and deadlines each chain of actions has to meet. We may assume that each action can be assigned any
of the two resources. Any resource can be accessed by at most one action at a time. The problem is to find
an assignment that meets the deadlines.

The main conceptual difference between planning and scheduling is that in scheduling, the actions in the
schedule are known in advance. In addition, scheduling problems are optimization problems, typically min-
imizing the total duration of the schedule (makespan), minimizing the idle time of resources, or maximizing
the utility/cost ratio.

Since optimization has always been a key issue in commercial application environments, there are count-
less deployed scheduling systems – either as dedicated schedulers or as back-end engines to enterprise
software. The most proximate application area is scheduling of industrial processes, which includes produc-
tion scheduling [226], manufacturing (for example, semiconductor manufacturing [97] or steel manufactur-
ing [74]), and workforce scheduling [73, 227]. Closely related from the technical perspective in terms of
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user requirements, etc., is scheduling of logistics in military operations [64], but also air campaign schedul-
ing [78]. Like for planning, the most prestigious application domains are of course space missions, for
example, observation planning for the Hubble space telescope [140,193] and data downlink planning for an
autonomous interplanetary spacecraft [49].

1.2.1 Classical Scheduling

The classical scheduling techniques originate in the field of Operations Research (OR), a discipline that par-
ticularly addresses optimization problems with mathematical models, statistics, and the like. OR literature
established over the years a systematic classification catalogue for scheduling problems that is based on
problem features and that enables a practitioner to choose the most appropriate and efficient solving method
for the problem at hand. The structure of a scheduling problem thereby mainly depends on its temporal con-
straints, the number and types of resources, and how resources are allocated. The most important technique
available today is Mixed Integer Linear Programming (ILP/MIP): Given a set of variables (some of which
are constrained to be integer), a system of linear inequations, and a linear objective function, the output of
the algorithm is a value for each variable that maximizes the objective function.

ai, j,b j,ci,xk ∈ IR, with some xl ∈ Z

maximize ∑
i

ci · xi subject to ∑
i, j

ai, j · xi ≤ b j

Most practically relevant scenarios are covered efficiently by this technique.

Although this just touches the tip of the iceberg and although OR-related techniques are well-established and
successfully deployed, we have to omit most of this research as it is not suitable for our needs: All optimiza-
tion algorithms (a) solely work under the assumption that all actions are known in the problem specification,
(b) can only produce a “final”, completely grounded solution (they do not explore a search space such that
they could be synchronized with a planning algorithm), and (c) are often optimized implementation for
exactly the target application’s problem class. For more details on the problem classification catalogue,
algorithms, and application scenarios, the reader may refer to [37, 216].

1.2.2 AI Scheduling

Artificial Intelligence techniques increasingly influence the scheduling research community. Due to their ex-
pressive power, AI formalisms and solvers provide a very natural way of modelling for most application ar-
eas (sometimes they even make innovative application areas accessible) [299]. Furthermore, a large number
of efficient technical solutions is available on the market that can often be easily combined with each other,
like search heuristics, inference mechanisms, etc. [141, 161]. In fact, search-based solvers exhibit a dramat-
ically increasing performance, surpassing OR techniques for many problems.

Constraint Satisfaction Problem solving (CSP) has always been the AI technique that is most widely used
for solving scheduling problems. A CSP is given by a set of variables together with their respective domains
(possible values) and a set of constraints that define the compatible values that the variables may take (subsets
of the power set of the domains). The problem is to find a value for each variable within its domain, such
that these values meet all the constraints. Solving a CSP includes two techniques: a search algorithm for
exploring the possible values for each variable and a propagation algorithm that infers consequences of
the value assignment decisions from search and makes the inferential closure of the constraints explicit.
Since constraints represent value restrictions on the variables, propagation implies domain reduction, and if
a domain is reduced to the empty set, the CSP is found to be inconsistent and hence has no solution. As
a technical note, many CSPs only make use of binary relations in the constraint set and can therefore be
interpreted as a graph structure with the variables being nodes and constraints being the vertices between the
constrained variable nodes. Under certain conditions, these structures allow for highly effective propagation
algorithms. This is, for example, the case in temporal relations and hence CSP solvers are often used to
manage very expressive temporal constraints efficiently as dedicated subsystems.
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For example, in a production scheduling application, a CSP can be set-up as follows: For each action that
is to be scheduled, the CSP contains three variables, namely the allocated resource, the start time, and the
end time. We may assume that the resources are explicitly enumerated (machine names, etc.) and that
the domains of the time variables are intervals over time points. The constraint set includes constraints
for relating start and end times, that means, for a given duration d of an action, the associated end time is
constrained to be exactly d time “after” the start. But it also contains precedence information such that for
any action a1 that precedes an action a2, the end time value of a1 is less or equal to the start time value of
a2. If the search algorithm sets the values for the start time of any action to a specific value, say, the begin
of the day shift, the propagation algorithm starts to disseminate this information into the other variables:
First, the end time of the action is reduced to the only value that is consistent with the constraint, that is,
day shift start time plus duration of the action. Second, setting the end time is reflected in the start time
of successor actions, because their lower bound has been updated. This information, in turn, affects the
successor actions’ end times, and so forth. On the other hand, there are also global constraints that are
only fulfilled if a resource is used at most once in every time interval, and the propagation of the temporal
constraints may therefore reduce the set of available resources for some actions. In this way, changes to
variable domains are spread until finally every action is assigned a definite resource and execution time
window.

Concerning the search algorithm, scheduling via CSPs has two options: (1) It may employ a constructive
search method such that it progresses incrementally assigning values to variables, propagating the con-
straints, and backtracking when violations appear. Since this is a technique of refinement that operates on a
partial schedule, the evaluation of global criteria can only be approximated. The positive aspect is however
that either a systematic search can be realized that explores all possibilities or a heuristic non-systematic
one that considers only “promising” possibilities. (2) The second option is to perform an iterative repair,
respectively local search methods: These algorithms start with a complete assignment of values to variables
and then reassign new values to variables in order to resolve violated constraints. The evaluation of global
criteria is evaluated with low cost. However, one of the main disadvantages local search methods is that they
can suffer from local minima and are often incomplete.

Note that since AI scheduling is basically a search-based approach, it is in line with planning techniques. In
fact, constraint satisfaction that uses constructive search is part of planning technology as far as it concerns
managing parameter bindings/equations and plan-step orderings.

1.2.3 Integrated Planning and Scheduling

As it has been discussed in the introductory section, an integration of planning and scheduling methods is
urgently needed because many applications will benefit from it. Typical real-world problems involve both
action planning and scheduling because they contain resource requirements as well as causal and temporal
relationships [282]. Beyond the challenge to produce complex courses of action, adequate planning support
in domains like crisis management [9, 26, 44, 70, 261], evacuation planning [262], or spacecraft assembly
and operation [1, 87] has to consider all kinds of resources; they range from limited time and material to
power and supplies and they all define success and efficiency of the mission. In addition to the selection of
cited reflections on the issue, Smith, Frank, and Jónsson demonstrate how many difficult practical problems
lie somewhere between task planning and scheduling, and that “neither area has the right set of tools for
solving these problems” [239].

The importance of the topic has led to a variety of approaches that perform temporal reasoning [6, Chap-
ter 1] and resource computations [281] during plan generation; in this overview section we want to briefly
examine the relevant directions. We thereby only focus on approaches that employ a strong methodology
in the sense of AI scheduling: A counter-example is the “manual” computation in the SHOP system [202],
which allows for resource calculations along the task reduction schemata that are programmed by the mod-
eler. This also includes GRAPHPLAN extensions like the resource time maps of IPP [159] or numeric en-
hancements of SAT-based approaches [222] that try to calculate the effects of parallel resource manipula-
tions.

Practically all existing resource-aware planners use resource information for pruning the search space, that
means, to rule out those plans that do not allow for a consistent resource allocation. In order to do so, the
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systems incorporate some form of a constraint-based resource management subsystem (see CSP methods
above). The SIPE-2 HTN system, for example, feeds its output to the OPIS scheduling engine and backtracks
if the plan cannot be scheduled [284].

But instead of generic schedulers, respectively CSP solvers, we often find system-specific implementations
of resource-analysis algorithms: They determine for each resource which are the manipulating operators and
classify these into consuming and producing actions. Considering the step ordering information, these re-
source reasoners try to project potential points of over-consumption of the resource.

O-PLAN [261] performs an optimistic and a pessimistic estimation for each resource profile [77]. The opti-
mistic scenario for a plan is thereby that all consumption steps are performed as late as possible, allocating
the minimal quantity possible, and that all production steps are performed as early as possible, produc-
ing as much as possible. The pessimistic estimator makes the inverse hypotheses. If the optimistic profile
value drops below zero, that means, if even in the optimistic plan scenario there is at least one point in
time at which the capacity of at least one resource is exceeded, then this plan cannot be developed further
and search has to backtrack. The pessimistic estimator is of limited usefulness, though, and not considered
for any strategic purposes. The system furthermore introduces constraints to evade potentially conflicting
plans, for instance, if the optimistic profile drops below a given threshold. Based on O-PLAN’s architecture
with its constraint managers [18], a pure scheduling system TOSCA has been developed that performs an
opportunistic search [17].

In the HYBIS system [43] we find an approach to hybrid planning that makes use of object aggregations
as justifications for expansion schemata [44]. This is in some sense similar to a view on aggregated re-
sources that we will be presented in a later section of this thesis (cf. [232]), although we do not restrict
ourselves to a passive feasibility check and perform scheduling operations when dealing with this kind of
abstraction.

Concerning scheduling-related functionality in POCL planners, the VHPOP system implements PDDL’s dura-
tive actions [297]. It incorporates temporal information in a way that is similar to the approach we are going
to propose: The ordering relation is substituted by a Simple Temporal Network, which allows to efficiently
detect temporal inconsistencies [71]. The authors also intended to extend the expressiveness of the tempo-
ral constraints, but it appears that neither the system structure nor in particular the results obtained therein
regarding POCL planning strategies can be transfered to such an extension.

A similar architecture is implemented in [107], where separate constraint-based planning and scheduling
modules share a common memory. This system develops several potential solutions in parallel, using a
strategy of stepwise constraint refinement. Again, the resource and temporal reasoning modules are solely
used for constraint consistency checking.

The HSTS system [193] is the prototype for a controller of the NASA space telescope Hubble that is designed
for operating the platform’s observation devices with a minimal reconfiguration time; in order to cope with
the amount of information that has to be taken into account, it schedules observation sequences on two
levels of detail and time horizons. Conceptually closely related to it is the mission planning module for the
autonomous space probe Deep Space One [194]. Both systems are constraint-based and generate schedules
for parametrized plan fragments, which have to obey larger sets of mission critical constraints. Latest
developments in the context of this kind of control software for autonomous spacecraft, the ASPEN platform
[55], follow the paradigm of iterative repair of flawed schedules. The focus of these systems is clearly
on scheduling and less on plan generation. However, [61] builds on it for an HTN planning approach that
uses summarized resource information in tasks (for summarized symbolic conditions and their usage in
the planning process see [62]). This form of abstraction recursively deduces bounds for local minima and
maxima of resources in abstract tasks from information about resource allocation within more primitive
tasks, thereby taking into account a possibly overlapping execution of tasks.

The IXTET temporal planning system [163] integrates planning and scheduling by using temporally quali-
fied expressions throughout the representation formalism. These expressions represent state transitions and
state persistences in the planning domain. We share the authors’ view of opportunistic scheduling as ad-
ditional plan modification steps that can be interleaved with other plan generation options: closing open
or unachieved preconditions, resolving (resource) conflicts, and adding constraints to evade bottlenecks.
The approach is provided with very efficient algorithms for determining potentially conflicting tasks in a
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partial plan (also known as minimal critical set computation) [164], for performing a least commitment
search that quantifies the level of commitment in every modification step, and so on. Another important
feature is the dynamic construction of a resource hierarchy that is based on action-condition analysis in
the current partial plan [104] (not to be confused with our notion of hierarchical resources as introduced
in [232]). The hierarchy represents a partial order on the “importance” of the resources for plan causality,
which induces the order in which the different resources should be preferably addressed by the reasoning
process.

A complete contrast to the above presented techniques is the approach in [244], where planning and schedul-
ing for symbolic resources are viewed as two processes that have to be completely separated. Therefore,
planning is performed on a relaxed problem level where no resource information is available and the result-
ing plan is given to a scheduler, which performs the necessary resource allocation. The rationale behind this
approach is preparing a causal operator skeleton that can be filled by a very efficient scheduling module.
This framework is defined for planning problems, in which always the plan with the fewest steps is cost-
optimal and resource information is not needed to guide the search. In many realistic domains, however,
there are typically situations in which some goods have to be produced on demand. In these situations, the
system falls back to a planner-only configuration.

The parcPLAN system [81] also performs a pre-planning phase: the durations of the plan steps are minimized
in order to determine the necessary overlapping actions and the minimal resource capacities. It introduces
meta-variables to represent potential interval overlappings. Their values are manipulated in the planning
process according to optimistic and pessimistic estimations: necessary operations are performed because
of over-consumptions, more opportunistic ones according to heuristics that aim at avoiding backtracking.
This procedure induces ordering modifications, namely setting and excluding interval overlaps. Again, this
approach solely ensures resource availability and does not guide the plan generation process actively by
resource demands.

Practically all presented systems are limiting themselves to keeping book of the consequences of plan gen-
eration steps on the balance of resource availability versus resource consumption of quantities over time.
However, this kind of reasoning does only detect the most necessary backtracking points, that means, situ-
ations in which backtracking becomes inevitable. It is difficult at least to guide the plan generation process
itself towards “better schedules”. This motivates methodologies that try to get more information out of the
resource analysis and into the planning process.

Our aim is consequently to provide a framework in which planning and scheduling functionality is uniformly
integrated. Integration should not be limited to a “two-subsystem” constellation in which a planner delivers
plans to a scheduling system that criticizes the intermediary result; it should rather be possible to generate
and abandon plans schedule-driven and vice versa.

1.3 Vision and Aims

Our introductory scenery motivated planning and scheduling by the cognitive phenomenon that appears
to be one of the corner-stones of human intelligence. But beyond the curiosity to investigate and mimic
the human mind, this research is in fact stimulated by the perspective to build systems that benefit from
exhibiting comparable deliberative capabilities in terms of flexibility and robustness. On the one hand, this
means software systems for supporting the human planning task, on the other hand it includes larger systems
to which planning and scheduling components are contributing. The latter scenario is thereby not necessarily
restricted to software and may be any kind of autonomous platform.

The above brief review of the state of the art in Artificial Intelligence Planning and Scheduling has shown
that this discipline has not only developed a rich assortment of concepts and methods but also that its
technology is provably a valuable contribution to system-support in key areas of academia and industry.
Regarding planning, action-based approaches provide systems with the ability to flexibly synthesize their
courses of action, while hierarchical planning techniques offer a great expressiveness, a natural knowl-
edge representation, and nevertheless considerable efficiency. Scheduling methods are very established and
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have become an integral part of countless business and industrial systems. We also believe that with AI-
based scheduling components becoming more and more accepted, a higher degree of integration with other
knowledge-based components will be accomplished – the synergy will make the technology even more
successful.

We do however observe the tendency that the three areas action-based planning, hierarchical planning, and
scheduling are not only pursued by three disjoint research communities, but even that this state stabilizes –
this is, of course, only a subjective observation. The selective integration attempts appear to be more a symp-
tom of this condition than a counter evidence: The implementations address specific aspects of an application
domain, very often in an ad-hoc manner. This “horizontal fragmentation” of the field thereby increases the
vertical one, that means, the traditional gap between basic and applied research.

Our aim is consequently to bring together the strands of the field in order to combine their strengths, open
up new application domains, and improve the coverage of existing ones.

We want to accomplish the envisioned consolidation under the roof of a clean formal framework with precise
semantics, that means, using one unified representation formalism and one integrated method that makes the
framework operational. We are thereby particularly interested in providing the means for a transparent,
declarative domain model specification and for a modular system design. While the former addresses the
requirements for modelling support and consistency analysis, the latter will let us flexibly combine the
characteristics and functionalities of the framework’s method repertoire.

But integrating planning and scheduling techniques raises the question of adequate and efficient search
control: While the mainstream systems have been thoroughly analyzed and equipped with highly efficient
strategies, we have to explore that terrain for integrated methods. We want to develop the concepts for
strategic advice of hybrid systems, but also perform some experimental evaluation to get a notion of their
impact.

Last, but not least, we want to present an implementation of the framework that is intended to be more than
just a proof-of-concept prototype. We want to demonstrate two aspects: First, that the implementation of the
unified framework is feasible without a compromise between formal foundation and practicability. Second,
the system is able to serve as an experimental platform for the evaluation of strategies and system compo-
nents. This shall give evidence to the capabilities of the integrating approach.

We would like to point out that this thesis focuses on the generation of symbolic plans and sched-
ules. This naturally excludes some important aspects of planning and scheduling like execution moni-
toring, plan/schedule repair, interactive planning and scheduling, on-line/dynamic planning and schedul-
ing, multi-agent planning and scheduling, path and motion planning, and the like. We believe that our
work lays the foundations for addressing at least some of these facets in future work and may stimulate
research for extending our framework accordingly, respectively encouraging appropriate integration initia-
tives.

In order to accomplish the above goals and to realize the vision of an integrated approach, this thesis has the
following agenda:

1. A formal framework that covers hierarchical and non-hierarchical planning and scheduling:
Clear semantics of domain the model entities should facilitate integration and allow for a formal
treatment of model consistency.

2. Complete integration of hierarchical and non-hierarchical methods: The hierarchical knowledge
is supposed to contribute with highly expressive modelling concepts, while non-hierarchical concepts
yield a flexible plan/schedule synthesis.

3. Complete integration of planning and scheduling: The combination is supposed to make planning
more intelligent due to resource-aware scheduling advice as well as make scheduling more intelligent
due to causality-aware planning advice.

4. Flexible planning strategies: Planning and scheduling strategies should take advantage of the inte-
grated methods in an efficient and opportunistic way.
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Figure 1.10: Dependencies among the chapters.

5. An effective software platform: The system implementation is supposed to allow for a flexible
tailoring of planning and scheduling technology as well as for systematic experimentation with and
on all components.

1.4 About this Document

The structure of this document corresponds to an implementation of our research agenda. All chapters
include a discussion of the results and references to related work on the more specific topics. Fig. 1.10
depicts the dependencies among the chapters.

We will begin with establishing the formal framework in Chapter 2 and define all entities that constitute a
domain model. We will describe how planning problems are specified, characterize solutions, and intro-
duce the basic mechanisms for developing plans into solutions. In that chapter, we will also propose our
generic algorithmic framework for solving hybrid planning and scheduling problems. Chapter 3 is dedi-
cated to instances of the framework that realize the integration of methods, for example hybrid planning
(Sec. 3.3.1). It will be shown how these instances are built by means of the framework and how they can
be extended. All relevant issues concerning search strategies will be discussed in the succeeding Chapter 4.
We will demonstrate how strategies can be defined in our proposed framework and present a number of
new strategy creations that can be employed in all kinds of integrated systems. Chapter 5 deals with the
application aspects of our approach, that means, the realization of the framework as a software artefact as
well as the specification of models for exemplary application domains. Regarding implementation issues,
we develop in Section 5.1 a system design that originates in knowledge-based systems and middleware tech-
nology likewise. In Section 5.2, we demonstrate the main issues in hybrid domain model specifications and
discuss design options. The technical part of this thesis ends with Chapter 6, in which we document an
experimental study that we conducted within our framework on a selection of strategies in the context of
hybrid planning. Our results provide a first insight into the performance characteristics of the strategies and
into some properties of the examined domain models and problems. In addition, they attest the suitability
of our approach to serve as an experimental platform for developing planning and scheduling systems and
strategies. We conclude in Chapter 7 with a general perspective on future developments and a summary of
our contributions.
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2 A Formal Framework For Refinement Planning

THIS chapter presents the formal framework that we have developed for hybrid planning and schedul-
ing. Instead of giving an informal description of “the usual meaning” for states, actions, plans, and
the like, we emphasize that the foundations of our approach lie in a sound, logic-based formalism

for domain-independent planning and scheduling. We thereby do not only cover the syntax and semantics of
the domain entities but also that of a refinement-based plan generation process. This provides our approach
with the following three unique characteristics.

Firstly, a logic-based approach per se allows for the unambiguous definition of the planning language el-
ements and the constructs made thereof. It does not only give a clear meaning to all involved terms and
concepts, it also provides the means to precisely specify the criteria for consistent domain models, mean-
ingful problem specifications, and correct solutions.

Secondly, it facilitates the construction of a sound reasoning procedure: the plan-generation algorithm
itself. We will define precisely what plan refinements are and how they can be operationalized prop-
erly.

Thirdly, our framework induces an architecture that enables us to flexibly set-up various system configu-
rations from a broad repertoire of modular planning functionality, ranging from partial-order planning to
HTN-planning and more. It is thus guaranteed that any implemented planning and scheduling system will
work in a meaningful way, that is to say, the framework realizes a plug-in architecture for highly configurable
sound planning and scheduling systems.

In the following sections we will define the framework’s syntax and semantics. We begin with the def-
inition of a fragment of first-order predicate logic that we employ as our common planning vocabulary.
It is used as the language for describing situations in the application domain, the world states, as well
as situation changes. From that, we develop the representation and semantics for actions and finally for
plans. We furthermore propose two abstraction mechanisms that are relevant for hybrid planning and
scheduling: an axiomatic abstraction of state features and an abstraction of plans by complex actions.
It is one of the major novelties of our approach that these abstraction mechanisms are seamlessly inter-
leaved.

As it has been stated in the introductory chapter, plan generation is the process of developing a course of
action that solves a given problem specification. That means, the plan achieves some goal conditions in the
modelled application domain, or it implements an abstract plan description. Such a problem specification
can therefore be viewed as an “abstract” or over-generalized solution to the problem, a general idea of
what is supposed to be done. In this view, plan generation means concretizing the initial plan sketch until
a satisfactory level of detail is reached: a level at which all kinds of conditions are satisfied, all action
interactions are sorted out, and all objectives are met. We adopt this notion and consequently introduce the
concept of plan refinement, which is based on the semantics of actions, plans, and abstractions. From the idea
of refinements, the fundamental techniques for building a universal planning and scheduling framework are
developed: flaws and plan modifications. The latter are explicit representations of refinements that are used
to construct a solution for a given problem specification, and flaws are the guides through the space of plan
refinements that explicitly indicate, where the deficiencies lie in the current plan.

This chapter concludes with algorithmic procedures that incorporate the outlined refinement-planning frame-
work and with a discussion of the presented results with an emphasis on search control issues. Concrete
instantiations, that means, implementations of this plan-refinement framework and the planning algorithms
will be presented in the subsequent chapter.

Throughout the following sections, we will incrementally develop a running example in order to motivate
and demonstrate the application of the introduced concepts. To this end, we have chosen to propose a
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2 Formal Framework

simple and, as we believe, self-explanatory logistics scenario: computer peripherals are ordered, delivered,
and set-up at a customer’s place.

2.1 The Logical Language

We use a fragment of an order-sorted first-order predicate logic as the basic formalism for the proposed
hybrid planning and scheduling framework. It is the logical planning language

L = 〈Z ,≤,Rr,R f ,Fr,F f ,V ,Tp,Tc,E 〉

which consists of the following components:

Z : A finite set of sort symbols,
≤: a partial order on the sort symbols in Z ,

Rr,R f : Z ∗-indexed families of finite sets of rigid and flexible relation symbols,
Fr,F f : Z ∗×Z -indexed families of finite sets of rigid and flexible function symbols,

V : Z -indexed family of finite sets of variable symbols,
Tp,Tc: Z ∗-indexed families of finite sets of primitive and complex task symbols,

E : A finite Z ∗-indexed family of elementary operation symbols.

Z ∗ denotes a word over the symbols in Z , including the empty word ε . Since we want to employ equality
in our formalism, Rr contains an equality-relation symbol ≡Z for every sort symbol in Z . For the sake of
a better readability, we will always use the equality symbol in the infix notation.

All of the sets in L are assumed to be pairwise disjoint. The precise meaning of the terms rigid and flexible
will be discussed later, but for now it is sufficient to regard them as mere labels for the respective symbol
sets. For the sake of a brief notation, we also define the following auxiliary union sets: In order to re-
fer to both labeled set variants jointly, we introduce the set of all relation symbols R = Rr ∪R f and the
set of all function symbols F = Fr ∪F f of the logical language. The set T = Tp ∪Tc denotes all task
symbols, primitive ones as well as complex ones. In addition, we define rigid and flexible constant sym-
bols to be the sets Cr =

⋃
Z∈Z Frε,Z and C f =

⋃
Z∈Z F fε,Z in the usual way as subsets of the respective

0-ary function symbol sets. For convenience, C = Cr ∪C f denotes the set of all defined constant sym-
bols.

The elementary operations-symbol set E provides for each flexible relation symbol R ∈R f a so-called add-
operation +R together with a corresponding delete-operation −R. In addition, the elementary operations
include an update operation := f for each flexible function symbol f ∈F f .

We begin with the definition of a running example that describes a very simple application scenario in which
computer peripheral devices are transported and installed. For a start, we formalize the fact that printers are
delivered in cardboard boxes; we will extend this scenario in the proceeding sections. For describing this
application environment, our initial definition of Ldevices may be given as follows:

Z = {Thing,Printer,Box,Place}
≤= {(Printer,Thing),(Box,Thing)}

R f = {OpenBox,ClosedBox,OnThingPlace,InThingBox} Rr= {}
Fr= {boxε,Box,printer_Aε,Printer,deskε,Place} F f = {}
V = {pPrinter,bBox, lPlace}
Tp= {openBox,unpackThingBoxPlace} Tc= {}
E = {+OpenBox,−OpenBox,+ClosedBox, . . .}

This is the vocabulary for modelling delivery situations and actions. The intended meaning of the language
components is obviously to express properties of boxes (Open and Closed) and spatial relationships between
objects (On and In).
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2.1 The Logical Language

It immediately occurs to the reader that an adequate specification of spatial relationships requires things to
be related on a more abstract level: in contrary to a language that provides a binary relation On for every
possible object-sort combination, a more concise representation is always preferable.1 We would therefore
like to express that things are located in places and subsume, for example, printers and boxes. The≤ relation
induces such a sort hierarchy by defining the sorts in Z to be super-, respectively sub-sorts of each other.
The formal background will be given below, for now Z ≤ Z′ basically means, that every individual of sub-
sort Z is also a member of super-sort Z′. In sorted logics terms and quantifiers carry information about
the intended scope and denotation. Order-sorted logics extend this principle to a hierarchy of sorts, which
allows for a more adequate and concise formalizations (and which supports efficient reasoning by reducing
the space of logically sound alternatives).

In the previous example, we specified ≤ to contain the two sort relationships Printer≤ Thing and Box≤
Thing. This definition induces a sort hierarchy in which printers and boxes are disjunct concepts that are
both things. Please note that all our examples abbreviate the notation of the sort hierarchy; it is always the
transitive reflexive closure of the given relations. Consequently, a sort hierarchy that defines cyclic sub-sort
relationships interprets all involved sorts as being identical. Furthermore, we have to stress that there is no
restriction on the structure of a sort hierarchy; it allows in particular for the definition of multiple super-
sorts. We would also like to point out that our interpretation of sorts and their hierarchies appears to have
strong similarities with description logics and their inclusion relation v, it should however not be mistaken
for a terminological concept definition, for it has different semantics. Concerning our example above, the
existence of the the sort Thing is merely a matter of convenience and not a semantic correspondence to the
most general concept > or its counterparts in ontology languages.

As it is usual for order-sorted logics, the well-sorted terms over a language L are defined recursively by the
following rules:

• A variable v ∈ VZ is well-sorted with respect to sort Z ∈Z .

• If τ is a well-sorted term of sort Z1 ∈Z and there exists another sort Z2 ∈Z such that Z1 6= Z2 and
Z1 ≤ Z2, then τ is a well-sorted term of (super-) sort Z2.

• If f ∈FZ1...Zn,Z′ and τ1, . . . ,τn are well-sorted terms of sorts Z1 . . .Zn, then the function expression
f (τ1, . . . ,τn) is a well-sorted term of sort Z′.

Ground terms are terms without variables. In the peripheral devices example, the ground term printer_A
is of sort Printer and consequently also implicitly of sort Thing.

The definition of well-sortedness includes a subtle implication concerning the relationship of sorts: In the
above paragraphs we made no clear distinction between sort symbols and sorts themselves; in fact, the
definition of sorts will be given in the next section, but their intended notion of being a type that represents
a specific set of objects is obvious. However, from a formal point of view, all constructs defined so far are
annotated with exactly one sort signature, which means, that every term can be of exactly one (most specific)
sort. Therefore, all sorts that are not in a sub-sort relationship or that do not have a common sub-sort are
disjoint by definition.

Well-sorted formulae over a language L are defined as usual:

• The truth values > and ⊥ are trivially well-sorted formulae.

• For a relation symbol R∈RZ1...Zn and a set of well-sorted terms τ1, . . . ,τn of sorts Z1 . . .Zn, the formula
R(τ1, . . . ,τn) is a well-sorted formula. It is conventionally called an atom. Ground atoms are atoms in
which all terms are ground terms.

• Given two well-sorted formulae ϕ and ψ , then ¬ϕ and ϕ ∧ψ are well-sorted formulae.

• Given a well-sorted formula ϕ and a variable v ∈ VZ that is free in ϕ , then ∀v.ϕ is a well-sorted
formula.

The remaining commonly used logical operators are defined as the usual shorthand notations:

1In fact, most planning systems never employed any type system and relied on respective predicates to indicate object classes. Even
the latest version of the International Planning Competition standard language PDDL only supports such a “simulated” sort system,
which is however optional (as is the declaration of predicates) [111]. A first step into more complex object typing is given in the
PDDL-successor candidate OPT, which allows for a type hierarchy [189].
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2 Formal Framework

• ϕ ∨ψ = ¬(ϕ ∧ψ)

• ϕ⇒ψ = ¬ϕ ∨ψ

• ∃v.ϕ = ¬(∀v.¬ϕ)

• . . . and so on.

We also use the standard notation ∀v1,v2ϕ instead of ∀v1.∀v2.ϕ and do so as well for existentially quantified
formulae. As it is common in logic terminology, we refer to atoms and negated atoms as positive and
negative literals.

Regarding the example scenario, it is easy to see that the ground atom On(box,desk) is a well-sorted literal
since the constant box is of sort Box with Box≤ Thing and constant desk is of sort Place, which matches
the signature of the atom’s relation symbol OnThingPlace ∈R f .

The above definitions constitute a fragment of predicate logic that provides all necessary building blocks for
describing world states and changes to world states.

2.2 States and State Abstractions

Our planning approach follows a state-based view on planning, which means, that the central means of
representing the real-world’s dynamics is a synopsis of specific attributes and conditions, expressed in
our logical language: a world state or situation. As we will see later, the execution of actions induces
changes to the world state, which makes state-based planning a reasoning process about state-transition
systems. In order to express the changes effected by a state transition, we use the flexible symbols that
are provided by our planning language. Consequently, we introduce states as interpretations of the flexible
symbols.

It is worth noting that we adopt McDermott’s notion of states as chronicles [185, 186], which provides a
subtle contrast to the view of states as “facts about the execution environment at a given point in time”.
The key difference is that chronicles describe what is true in the world, what was true, and what will be
true, provided no further actions are initiated. A state transition, according to the chronicle metaphor,
therefore corresponds to the common-sense notion of changing the future course of events without being
able to access the past. This persistence quality of states will be picked up in the action-dedicated sections
below.

Fig. 2.1 illustrates the construction and usage of states: In the peripheral device delivery example the model
focuses on the aspect that the box is closed, that it is standing on the customer’s desk, and that it is containing
a printer. The model thereby deliberately ignores properties of the box and the printer, for example, the
box’s inscription, the printer’s color, and the like. The model of the open action describes the state transition
induced by executing the action in terms of the relevant state features. In the example, performing the
open action opens the box without changing the box’s content or position. The chronicle view interprets
this state as follows: everything that is true is either true from the beginning (the location of the box) or
has been changed during the course of action (the box is now open). In order to provide a referential
frame to the states, we begin with introducing the logical model for interpreting the symbols in a state
description.

For a given logical language L a model denotes a structure M = 〈D,I 〉. The first element D is a Z -
indexed family of finite carrier sets or domains. For every sort symbol Z ∈ Z there exists an associ-
ated non-empty set of objects DZ representing the respective domain. Please note that in most cases when
we refer to “the sort Z”, we mean the carrier set DZ or the concept that constitutes it. The sort hierar-
chy that is induced by the ≤ component of the language is reflected in the following domain relation-
ships:

∀Z,Z′ ∈Z : Z ≤ Z′⇒DZ ⊆ DZ′

I is a state-independent interpretation that assigns functions and relations of appropriate type to their
rigid symbols in L . That means, that every f ∈ FrZ1 ...Zn ,Z′ is interpreted by a respective function f I :

Z1× . . .×Zn→ Z′ and every R∈RrZ1 ...Zn
by a specific relation RI ⊆ Z1× . . .×Zn. Analogously, for a given
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2.2 States and State Abstractions

Closed(box)
On(box,desk)
In(printer-B,box)

Open(box)
On(box,desk)
In(printer-B,box)

open(box)
Open(box)

On(box,desk)
On(printer-B,desk)

unpack(printer-B,box,desk)

Figure 2.1: States and state transitions as abstractions of the real world in the computer peripheral device
scenario. A cardboard box is delivered, which contains a printer. The first action is to open the
box and after that to take out the printer and place it on the customer’s desk.

model M a state s is an interpretation of the flexible relation and functions symbols over D. The set of all
states over a language L and a model M is denoted by S .

In order to evaluate terms and formulae containing variables, we introduce a sort preserving valuation β :
VZ → DZ . This function provides a mapping from variables onto domain objects. We use β [v/d] with
variable v ∈ V and carrier set d ∈ D for the valuation β

′ that satisfies β =v β
′ (β and β

′ agree on all
arguments except possibly v) and β

′(v) = d.

Now we have the instruments at our fingertips for giving a meaning to terms. Given a logical language L
and a model M = 〈D,I 〉, a well-sorted term τ is evaluated in a state s under a valuation β , written as
[[τ]]s,β , according to the following recursive definition:

[[v]]s,β =β (v) for v ∈ V

[[ f (τ1, . . . ,τn)]]s,β =

{
f I ([[τ1]]s,β , . . . , [[τn]]s,β ) for f ∈Fr

f s([[τ1]]s,β , . . . , [[τn]]s,β ) for f ∈F f

Please note that we restrict the set of states S to those, which assign finite relations to the symbols in R f .
Since our carrier sets are finite as well, this implies that our models are natural ones [247].

The state features depicted in Fig. 2.1 suggest a world-state characterization that is based on atoms like
Closed(box). In fact, the representation of states as sets of positive literals like it has been introduced by the
STRIPS formalism [92] is very common in the AI planning area to date (planning graph based systems [28],
heuristic state-space planners [136], etc.). Every atom that is explicitly stated in the situation’s set is a fact
that “holds in the state”, while every possible other atom implicitly does not hold – the so-called closed
world assumption. Contrary to this set-based semantics, our formalism will use formulae to express facts
about the world states, and a given state will consequently either satisfy a given formula or it will not. This
representation is clearly more expressive and will allow for a more elegant formalization of actions, etc.
The example in Fig. 2.1 thus has to be read as “the conjunction of the given state features holds in that
state”.

The following definition specifies the satisfaction relation between a formula ϕ and a state s. For a given lan-
guage L and a model M = 〈D,I 〉, a well-sorted formula ϕ is valid (invalid) in a state s under a valuation β ,
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2 Formal Framework

denoted by s |=M ,β ϕ (respectively s 6|=M ,β ϕ) according to the following definition:

s |=M ,β >
s 6|=M ,β ⊥

s |=M ,β (τ1 ≡Z τ2) if and only if [[τ1]]s,β = [[τ2]]s,β

s |=M ,β R(τ1, . . . ,τn) if and only if

{
〈[[τ1]]s,β , . . . , [[τn]]s,β 〉 ∈ RI for R ∈Rr

〈[[τ1]]s,β , . . . , [[τn]]s,β 〉 ∈ Rs for R ∈R f

s |=M ,β ϕ ∧ψ if and only if s |=M ,β ϕ and s |=M ,β ψ

s |=M ,β ¬ϕ if and only if s 6|=M ,β ϕ

s |=M ,β ∀v.ϕ if and only if s |=M ,β [v/d] ϕ

for every element d in the appropriate domain DZ for variable v ∈ VZ

The converse relationship can be used to characterize a set of states by a formula ϕ , that means those states in
which the formula is valid for a given model under a given valuation: Sϕ = {s|s |=M ,β ϕ}.
Since we want to support a practical way of building domain models as well as an efficient plan generation
process, an abstraction of states that is based on non-logical axioms lends itself for describing real-world
situations in a more generalizing manner (cf. Sec. 1.1.3). In the simple running example of Fig. 2.1, it
would be a very natural thing to combine the state features On(box,desk) and In(printer_A,box) into
one atomic feature Delivered(printer_A). Detailed information about the identity of the actual box and
whether it is currently closed is generally not relevant. The less abstract state description becomes useful
only when our reasoning process starts focusing on the unpacking action.

Such a technique of combining features can also be referred to as knowledge transformation and only few
approaches exist2 that adopt it. A proper formal integration is essential in order to ensure properties such as
executability of plans, etc. These issues will be addressed in later sections, but for motivating the upcoming
definitions and design choices, the basic ideas shall be sketched here: Generally speaking, we need to pro-
vide criteria that can guarantee that an abstract state description captures the relevant facets of the detailed
state model in a coherent way. Then, and only then, a plan that works on the most concrete level of detail
provably implements an abstract plan that has been formulated in terms of abstract state features, and even-
tually this will be used to show that the plan solves a problem specification. In the worst case, not properly
grounded knowledge transformations intrinsically permit contradictory state descriptions, hence the mod-
eler may introduce unnoticed inconsistencies due to which no executable plan can ever be developed. We
will thus introduce (non-logical) state-abstraction axioms for specifying atomic feature abstractions, which
is a concept that very naturally blends in our formal framework.

Definition 2.1 (State-Abstraction Axioms). Given a language L and model M , a state-abstraction axiom
δ relates an atom with a disjunction of possible refinements. Let such an abstract atom’s symbol be R ∈
RZ1...Zk . Let furthermore v1, . . . ,vl be the variables occuring in the atom’s argument terms τ1, . . . ,τk and
w1

11
, . . . ,wm

lnm
those of the argument terms of respective atoms R1

1, . . . ,R
m
nm . A state-abstraction axiom for an

atom over R is then defined as the following well-sorted formula:

δ = ∀v1 . . .∀vl .∃w1
11

. . .∃wm
lnm

.R(τ1, . . . ,τk)⇔R1
1(τ

1
11

, . . . ,τ1
k1

)∧ . . .∧R1
n1

(τ1
1n1

, . . . ,τ1
kn1

)

∨ . . . ∨
Rm

1 (τm
11

, . . . ,τm
k1

)∧ . . .∧Rm
nm(τm

1nm
, . . . ,τm

knm
)

•

The state-abstraction axiom can be read as follows: an abstract state feature over the relation symbol R has
m possible concretizations, each of which is conjunctively composed of nm (more concrete) state features.
In order to narrow down intended variable assignments, these axioms can also model a variable to be “cast”

2To our knowledge, there is only one piece of work dealing with knowledge transformation, basically by a literal translation mecha-
nism [44]. Not surprisingly, it is also a hybrid planning approach, the HYBIS system (see Sec. 1.1.4).
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2.2 States and State Abstractions

into a sub-sort. For this reason, the refinements in state-abstraction axioms typically contain additional
equations such that the universally quantified variables in the abstract atom are co-designated with some of
the existentially qualified variables in the disjuncts that are more specific. We will refer to the disjuncts also
as the possible refinements for the abstract atom. Each possible refinement is sufficient for the abstraction to
hold, which is the usual notion of concrete facts (“⇐”). Since we assume our abstraction model to be a total
definition of all permitted alternatives, the axiom is also defined as an implication from the abstract into the
concrete ("⇒”).

A set of state-abstraction actions consequently induces a hierarchical relationship between state features and
their possible refinements and thus also a hierarchical relationship between formulae containing the atoms.
The following definition conveys this notion.

Definition 2.2 (Refinements of Formulae). Let ∆ be a set of state-abstraction axioms. A formula ϕ ′ is called
a refinement of a (more abstract) formula ϕ with respect to ∆ if and only if ϕ ′ entails ϕ according to the
axiom set: ∆∪{ϕ ′} |= ϕ . •

The refinement relationship between formulae imposes a hierarchy, and since formulae are used to charac-
terize states, ∆ is therefore also called to induce a state feature hierarchy.

The computer peripheral delivery scenario of our running example incorporates abstract state descriptions
by providing three possible refinements for an abstract printer delivery: the first has been explained before
and generalizes from a printer being packaged in a cardboard box that has arrived at the customer site.
Alternative refinements may be the following: the printer is a big laser copier, which is personally trans-
ported by its vendor and received by an employee, or the printer is a small office model that is bundled to a
personal computer. To represent these concepts, we extend the example language Ldevices in the following
way:

Z ={Thing,Printer,Box,Place,

LaserCopier,Desk,Person,Vendor,Employee,OfficeModel,PC}
≤={(Printer,Thing),(Box,Thing),(Desk,Place),(PC,Thing),(LaserCopier,Printer)

(OfficeModel,Printer),(Vendor,Person),(Employee,Person)}
Rr ={SellsVendorThing,BundeledThingPC}
R f ={OpenBox,ClosedBox,OnThingPlace,InThingBox,DeliveredThing,RunningThing,

ConnectedThingThing,CarriesPersonThing,ReceivedThingPerson,InstalledPCPlace}
Fr ={boxε,Box,printer_Aε,LaserCopier,printer_Bε,OfficeModel,deskε,Place,PC_5ε,PC,

employee_SmithEmployee,ε ,vendor_XVendor,ε , . . .}
F f ={}
V ={pPrinter,bBox, lPlace, . . .}
Tp ={openBox,unpackThingBoxPlace} Tc = {prepareBox} E = {. . .}

The adapted sort hierarchy ≤devices is also depicted in Fig. 2.2.

A state abstraction δ ∈ ∆devices for describing the alternative refinements given above can be specified with
the extended language by the following state-abstraction axiom:

∀pPrinter ∃bBox,dDesk, lLaserCopier,vVendor,eEmployee,oOfficeModel, pcPC

Delivered(p)⇔(On(b,d)∧In(p,b))∨
(l ≡ p∧Sells(v, l)∧Carries(v, l)∧Received(l,e))∨
(o≡ p∧Bundeled(o, pc)∧Installed(pc,d))
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Thing

PrinterBox PC

LaserCopier OfficeModel

Desk

Place

Vendor Employee

Person

box printer-A printer-B deskpc-5 vendor-X employee-Smith

Figure 2.2: The extended sort hierarchy with the associated rigid constants (objects) of Ldevices.

Delivered(p)

On(b,c)
In(p,b)

l=p
Sells(v,l)
Carries(v,l)
Received(l,e)

o=p
Bundeled(o,pc)
Installed(pc,d)

Figure 2.3: A state feature hierarchy induced by ∆devices.

Please note the use of equations in the abstraction axiom: the first conjunct in the last disjunct, for ex-
ample, co-designates the universally bound printer variable p with that of the existentially bound office
model o. This equation achieves a sort conversion of the abstract feature’s argument and is the technical
way of specifying that the refinement applies for instances of specific sub-sorts (also known as a variable
“cast”). An informal graphical representation of the state feature hierarchy that is induced by the exam-
ple axiom is depicted in Fig. 2.3. Every box displays some state features that are valid in the respective
state.

In practice, most of the alternatives that are modelled in state-abstraction axioms will exclude each other.
Since any printer is, for instance, either a laser copier or an office ink model, the possible refinements of an
abstract state will be disjoint sets of states: there will be no state in which a laser copier is sold in a bundle
with a PC. Such a mutual exclusion is however not necessarily given, and the refinement states can occa-
sionally cover several possible refinements of an abstract state “simultaneously”.

As it has been stated above, consistency concepts become necessary in order to provide meaningful and
sound state-abstraction hierarchies. The following notion of state-abstraction consistency captures the logi-
cal consistency of the axioms together with a well-formedness criterion for concretizations.

Definition 2.3 (Consistency of State-Abstraction Axioms). A set of state-abstraction axioms ∆ over a lan-
guage L and model M is called consistent if and only if the following conditions hold:

1. ∆ is satisfiable and

2. every axiom δ ∈ ∆ for an atom over a rigid relation symbol R ∈Rr contains in every refinement only
atoms with rigid relation symbols.

•
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The consistency criteria address crucial aspects of state-abstraction axiom definitions: The first criterion
ensures that the axioms are logically consistent, that means, there exists a model satisfying the sentences
in ∆. This is an essential requirement for meaningful models of abstraction, since inconsistent axiom sets
trivially support arbitrary refinements, including unintended absurd ones (ex falso sequitur quod libet). The
second criterion ascertains state-refinements to adhere to a notion of well-formedness; when using consis-
tent state-abstraction axioms for “unfolding” abstract state descriptions, rigid and flexible state features do
never alternate. Anticipating the sections below dedicated to the representation of actions, we note that the
interpretation of flexible atoms may change from state to state while that of rigid ones does not. In other
words, flexible symbols characterize dynamic world-state features, and rigid symbols mark static world-state
features. While it is quite intuitive to abstract multiple rigid state features in one summarizing rigid feature
and analogously to do so for flexible features, mixtures of rigid and flexible atoms have to be examined
more deeply. On the one hand, it makes perfectly sense to build a flexible abstraction over combinations
of rigid and flexible features because the notion of change3 is an abstraction of stasis (consider stasis to be
represented by a constant change from the same into the same). Our previous example abstraction axiom
uses the abstract atom over Delivered in one refinement for aggregating a static atom Sells (assuming
that the vendor is continuously offering the desired kind of printer during our planning horizon) and several
flexible ones (the exemplary employee who Received the printer in that very state will probably not do
so all day long). To put it short: concrete change can imply abstract change under static concrete condi-
tions.

The opposite scenario, that means, to apply flexible state features as refinements of abstract static features,
however introduces a paradox: reasoning about such axioms would derive rigid state features from flexible
ones. This implied that some rigid features would change at the moment some flexible do and therefore
these rigid atoms would become flexible for themselves. This contradiction propagates into our semantics
for plans (which will be presented below), which basically states that concrete plans are logical justifications
for abstract plan specifications. The reason for abstraction lies in having a reduced model of the world that
consistently behaves on its abstract level in correspondence to the way the refined one does on the concrete
level. Finding however a concrete plan such that its abstraction uses rigid state features that do not hold
consistently, is a contradiction in its own and that concrete plan should have never been allowed to be
developed.

Now that we can represent and explain the meaning of a state, we are ready to deal with state transitions,
which describe the dynamics of the world.

2.3 From State Transitions to Actions

In Artificial Intelligence planning, actions are the representations of the dynamics of the real world. Recall
the exemplary course of action depicted in Fig. 2.1: there is an agent performing actions that first opened the
box and then emptied it. This kind of “atomic activities” is going to be called operators and we will define
them in terms of state transitions that are induced by elementary operations. But we will also investigate
abstract forms of actions: so-called complex tasks stand for sets of sequences of operators. In our running
example, opening the box and unpacking the printer might be part of a larger, more abstract “setting-up”
activity. This section first defines the structure of our action representation and shows what it means for an
action to be executable and how to determine what world states are going to look like after executing an
action. Based on these semantic considerations, it will finally provide a notion of consistency in order to
define meaningful action models only.

We will begin with atomic elementary operations that represent changes to the interpretation of flexible
symbols. These elementary operations are the atomic building blocks for the semantics of actions: This
means primitive tasks as well as abstract ones.

In order to characterize a change in the interpretation of a flexible symbol, we introduce for each flexible
relation symbol R ∈ R fZ1...Zn

of a given language and model the following two relation update-functions

3This more than 25 centuries old discussion is clearly out of the scope of this thesis. However, Heraclitus’ view of stasis as a mere
illusion of unnoticed change – the only constant – conceptually matches our state-based modelling view. “Potauoisi dis toisi autoisi
ouk an embaies etera gar <kai etera> epirreei udata”: You cannot step twice into the same river.
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2 Formal Framework

d−R : DZ1 × . . .×DZn →S ×S and a−R : DZ1 × . . .×DZn →S ×S with

s d−R(d1, . . . ,dn) s′ if and only if Rs′ = Rs \{(d1, ...,dn)} and R′s
′
= R′s for R′ 6= R

as well as f s = f s′ for any f ∈F

s a−R(d1, . . . ,dn) s′ if and only if Rs′ = Rs ∪{(d1, ...,dn)} and R′s
′
= R′s for R′ 6= R

as well as f s = f s′ for any f ∈F

For each flexible function symbol f ∈F fZ ,Z1 ...Zn
we provide a so-called term update-function u− f : DZ1 ×

. . .×DZn ×DZ →S ×S with

s u−f (d1, . . . ,dn,d) s′ if and only if f s′ = f s
[(d1,...,dn)←d] and f ′s

′
= f ′s for f ′ 6= f

as well as Rs = Rs′ for any R ∈R

The expression f s
[(d1,...,dn)←d] thereby denotes an interpretation of function f that agrees with f s except for

the arguments d1, . . . ,dn, in which case f evaluates to d. As we employ natural models, there exists for any
two states s and s′ a finite sequence of relation and term update-functions u1, . . . ,un such that s u1 ◦ . . .◦un s′,
where ◦ denotes functional composition [247].

Based on the definitions of the a−R, d−R, and u− f update functions on states, we can now define the
semantics of elementary operations E of our planning language as follows. Given a language L , a model
M and a valuation β , a pair of states 〈s,s′〉 satisfies elementary operations +R(τ1, . . . ,τn), −R(τ1, . . . ,τn),
and := f (τ1, . . . ,τn,τ) according to the following definition:

〈s,s′〉 |=M ,β +R(τ1, . . . ,τn) if and only if s a−R([[τ1]]s,β , . . . , [[τn]]s,β ) s′

〈s,s′〉 |=M ,β −R(τ1, . . . ,τn) if and only if s d−R([[τ1]]s,β , . . . , [[τn]]s,β ) s′

〈s,s′〉 |=M ,β := f (τ1, . . . ,τn,τ) if and only if s u−f ([[τ1]]s,β , . . . , [[τn]]s,β , [[τ]]s,β ) s′

This means, elementary operations represent single, atomic state transitions that change the symbol inter-
pretation in one specific argument and leave all other aspects unmodified. We finally adopt from [247] the
concept of weakest preconditions (wp) with respect to elementary operations. Let ϕ be a formula which
contains only variables that are distinct from those occurring in τ1, . . . ,τn.

• The weakest precondition of ϕ with respect to the elementary addition +R(τ1, . . . ,τn) is the formula
resulting from ϕ in which all atomic sub-formulae R(σ1, . . . ,σn) are replaced by [(τ1 6= σ1∨ . . .∨τn 6=
σn)⇒R(σ1, . . . ,σn)].

• wp(ϕ,−R(τ1, . . . ,τn)) results from ϕ by replacing all atomic sub-formulae R(σ1, . . . ,σn) by [R(σ1, . . . ,σn)∧
(τ1 6= σ1∨ . . .∨ τn 6= σn)].

• Regarding the term update, wp(ϕ, := f (τ1, . . . ,τn,τ)) is obtained from ϕ by replacing all occurrences
of term f (τ1, . . . ,τn) by τ .

The weakest precondition of a formula ϕ with respect to a sequence of elementary operations e1 . . .en is
defined recursively as wp(. . .wp(wp(ϕ,e1),e2) . . . ,en).

Building on the above state transition semantics, the following definition introduces the first type of actions
that is supported by our framework.

Definition 2.4 (Operator). Given a language L = 〈Z ,≤,Rr,R f ,Fr,F f ,V ,Tp,Tc,E 〉, an operator or
primitive task schema is defined by a structure

o(v) = 〈prec(o(v)),eff(o(v))〉

where

• o ∈Tp is an operator symbol,
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• v = v1, . . . ,vn is a list of variables from V , the so-called operator parameters, that matches the operator
symbol’s signature,

• prec(o(v)) is a well-formed formula over L in which all free variable occurrences are elements in v,
and

• eff(o(v)) = e1 . . .em is a non-empty, finite sequence of elementary operations over the operation sym-
bols in E . All variables occurring in eff(o(v)) are from v.

An instance of the operator schema is a copy of the schema where all parameters are substituted by new
variables through a well-sorted variable replacement. •

For a given model M and a valuation β , an operator o(v) = 〈prec(o(v)),eff(o(v))〉 transforms a state s into a
state s′, denoted by 〈s,s′〉 |=M ,β o(v), if and only if the following two conditions hold:

1. s |=M ,β prec(o(v)), that means, the operator is applicable in s, and

2. there exists a sequence of states s0, . . . , sm with s = s0 and s′ = sm such that 〈si−1,si〉 |=M ,β ei for
1≤ i≤ m.

The second condition can also be formalized via the functional composition s u1 ◦ . . . ◦ um s′ where ui is
the corresponding update function to the elementary operation ei for 1 ≤ i ≤ m. This definition has the
advantage that no intermediate states s1, . . . , sm−1 have to be taken into account.

The operator generates a formula ϕeff over L if in addition s |=M ,β wp(ϕeff,e1 . . .em).

Please note that our view of state transitions is based on a transformation of the states themselves and is
therefore in the spirit of ADL action schemata [213], unlike the formula transformation approach of STRIPS
operators [92, 169].

Since specific state features are exclusively subject to change by the respective elementary operations, all
other features are consequently assumed to persist, that is to say, to be invariant against an operator’s
effects. This informal notion of feature persistence can be formally expressed with respect to formulae
as follows. For a given model M and a valuation β , a formula ϕ is invariant against an operator o(v) =
〈prec(o(v)),eff(o(v))〉 if and only if for all pair of states s and s′ with 〈s,s′〉 |=M ,β o(v) the following holds:
if s |=M ,β ϕ then s′ |=M ,β ϕ .Invariance of a formula against a sequence of operators o1 . . .on is consequently
defined inductively as the invariance of the formula against every single operator over the progression of the
sequence.

Finally, a formula ϕ is generated by a sequence o1 . . .on of operators if and only if it is generated by some
oi (1≤ i≤ n) and is invariant against the (sub-) sequence oi+1 . . .on.

Let us continue with the development of our running example and put some of the above definitions in
practice. Please recall the two actions depicted in the delivery scenario in Fig. 2.1. Both are intended to be
ground instances of the following primitive task schemata (openBox and unpackThingBoxPlace are operator
symbols in Tp):

open(b) =〈Closed(b),+Open(b)−Closed(b)〉
unpack(p,b, l) =〈Open(b)∧In(p,b)∧On(b, l),

+On(p, l) :=weight(b,weight(b)−weight(p))−In(p,b)〉

These task schemata can be read as follows: Opening a box-like object can be performed in a given state s
if the box is closed in that state. After the execution of an open action the world is in a state s′ that describes
exactly the same situation except for the interpretation of literal Closed, which does not hold for the given
box anymore, and a state feature Open that became valid.

The unpacking action schema is defined with three parameters: the variable b stands for the box to unpack,
the variables p and l are for grounding the operator with respect to the printer inside the box and with the
location the box is currently standing on, respectively. After the printer p is unpacked, it is located next to
the box in the position “on” the location instance l, and the box’s weight is updated to the weight it had
before the unpacking minus the unchanged weight of the printer (remember that term updates are evaluated
in the state before the transition).
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Requires(c,p)
Sells(v,p)
price(p)=x

Running(p)
budget=y-x

Connected-To(p,c)

set-up-peripheral(p)

requirement-def(p)

delivery-installation(p)

ordering(p) approve(p)

payment(p)

Figure 2.4: Task abstraction in the delivery scenario: setting up a computer peripheral, which is an abstrac-
tion of purchasing and installing printers, storage devices, and the like.

While operators describe those actions that are considered to be atomic, complex tasks are the means to
aggregate such basic primitive actions into abstract processes and state transition specifications. They intu-
itively represent an abstraction of possibly multiple primitive courses of action. For example, the concrete
procedure in the peripheral device delivery domain (see Fig. 2.1) may be part of the implementation of an
abstract process. Let setting up a computer peripheral be an abstract action in that domain, and let it cover
the purchase and installation routine for various kinds of hardware components (Fig. 2.4). If we imagine
corresponding state abstractions, the abstract “set-up” task will subsume various courses of action by captur-
ing an abstract specification of the states in which the subsumed actions are executable and for those states
which they generate. We will give an example for that: Analogously to what has been illustrated for the
state-abstraction axioms (see example after Def. 2.1), the set-up procedures start off in states that identify
the computer to which the peripheral is to be connected, the vendor and price for the peripheral, the avail-
able budget, and the like. The common precondition can be formulated in an abstract way, namely that the
computer meets the prerequisites for connecting to the peripheral, that the budget allows for the price of the
peripheral, that the vendor actually has the peripheral in stock, etc. After executing any concrete course of
action subsumed by this set-up task, the budget will be spent, the peripheral will be connected to the com-
puter and running, and so on. Intuitively, there are also several layers in which the task implementation can
be divided: in a first layer, the set-up consists of the requirement definition (determining which peripheral to
deploy), the product ordering phase, the delivery and installation tasks, and finally putting the new periph-
eral into operation and processing the payment transaction. The second layer deals with the different types
of defining the requirements, for example, the choice of a specific printer model depends on the supported
operating systems, the volume of printed documents, and so forth. Also in the second layer, the ordering
procedure can be made more concrete (on-line shopping, contracted vendor, . . . ) and the delivery and instal-
lation processes are planned. The latter may vary from simply placing the printer on a table and plugging in
a cable to integrating a sophisticated hardware in a print shop setting.

The example exposes the nature of abstract actions as abstract state transitions: by addressing abstract state
features, they use their preconditions and effects effectively as state specifications for concrete courses of
action to start from and to end in. In other words, abstract actions provide input and output “gates” for imple-
menting operator sequences, so abstract state transition means here to conceal the details of the transitioned
states as well as the concrete number and configuration of intermediate states. We will see later how this
technique accords with the previously described way of modelling in layers (cf. HTN planning in introduc-
tory Sec. 1.1.3 and the corresponding framework implementation in Sec. 3.2.3).

Let us now define the structure of abstract actions, which is similar to that of operators.
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t(v) = 〈prec(t(v)), post(t(v)))

o11(v11)

om1(vm1) omn(vmn)

o1n(v1n)
s |=M,β prec(t(v))

. . .

. . .

s′ |=M,β post(t(v))

Figure 2.5: Implementations of a complex task.

Definition 2.5 (Complex Task). Given a language L = 〈Z ,≤,Rr,R f ,Fr,F f ,V ,Tp,Tc,E 〉, a complex
task is the structure

t(v) = 〈prec(t(v)),post(t(v))〉
where t ∈Tc is a complex task symbol and v = v1, . . . ,vn is a list of variables from V , also referred to as the
task’s parameters, that matches the task symbol’s signature. The precondition prec(t(v)) and postcondition
post(t(v)) are (well-formed) formulae over L and all free variables occuring in these formulae are taken
from the parameter list.

An instance of the task schema is a copy of the schema where all parameters are substituted by new variables
through a well-sorted variable replacement. •

We will use the term abstract task synonymously.

In the style of the respective definition for operators, for a given language L and model M , a set of state-
abstraction axioms ∆, and a valuation β , a complex task t(v) transforms a state s into a state s′, denoted by
〈s,s′〉 |=M ,β t(v) if and only if the following conditions hold:

1. s |=M ,β
∧

δ∈∆ δ and s′ |=M ,β
∧

δ∈∆ δ (sand s′ comply with the axioms)

2. s |=M ,β prec(t(v)) (the task is applicable in state s)

3. s′ |=M ,β post(t(v))

4. There exists a finite sequence s1 . . .sn of states and a finite sequence o1 . . .on−1 of operators, where
s = s1, s′ = sn, 〈si,si+1〉 |=M ,β oi for all 1 ≤ i < n and o1 . . .on−1 generates a formula post′ such
that sn |=M ,β (post′⇒post(t(v))). Every such operator sequence is called an implementation of the
complex task.

Given a set of operators O = {o1, . . . ,on}, the set of all implementations for a complex task schema t(v)
is the set of all operator sequences o1 . . .om that are implementations for t(v) over two states s,s′ ∈S for
which 〈s,s′〉 |=M ,β t(v).

The complex task generates a formula post′′ if and only if in addition sn |=M ,β (post(t(v))⇒post′′). Formula
persistence and the treatment of complex task sequences are defined analogously to the corresponding cases
for operators.

The above state transformation definition provides the formal foundation for our previous informal presen-
tation: the semantics of abstract actions is based on the state transition sequences that are provided by the
available primitive task schemata. Consequently, a complex task represents all possible concrete realizations
of the specified state transition, and that means, it stands for a disjunctive set of operator sequences, depend-
ing on the defined operator schemata and abstraction axioms. This is illustrated in Fig. 2.5. Please note that
according to the traditional representations for abstract actions in HTN planning, any operator sequence is
trivially an implementation of a complex task without preconditions and effects.

Let us define a complex task for the running example. The abstract action with the task symbol prepareThing ∈
Tc is intended to represent all concrete courses of action that deal with the unpacking procedure of a deliv-
ered good. Let us furthermore assume, that Ldevices contains a flexible relation symbol ReadyToConnect

Thing
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in order to express that something is connectable to a computer or some other device.

prepare(p) = 〈Delivered(p),ReadyToConnect(p)〉

Let in addition to the previous axiom ∆devices contain an appropriate state-abstraction axiom for relating the
abstract state feature ReadyToConnect with at least the following refinement:

∀tThing ∃pPrinter,dDeskReadyToConnect(t)⇔(t ≡ p∧On(t,d)∧∀bBox : ¬In(p,b))∨ . . .

The delivered good can be connected to another device if it is a printer, stands on a desk, and is not packaged
in any box.

It is easy to see that the previously introduce opening and unpacking operators are an implementation of the
above abstract task, since they perform precisely the specified state transitions.

Regarding the operator and task schema definitions, it is understandable that even this very accessible model
that we have developed so far becomes increasingly complex and soon vulnerable to inconsistencies: What
if the primitive task repertoire does not contain appropriate operators so that an item residing in a box
cannot be placed On something? What if the In relation was rigid and therefore used wrongly in effect
specifications? If the object referenced by p is On another object l, is there an abstraction axiom that (im-
plicitly) prevents In(p,b) or one that deduces it? It is an intrinsic characteristic of deductive planning
approaches to enable reasoning about whether such action properties hold or not. Domain constraints for
describing state invariants like security requirements can be directly validated [27]. Although our approach
is not a deductive one, its logic foundations originate from there and it consequently allows for various
profound model analysis techniques, including the above described invariance verification. While domain
analysis as such is not in the focus of this thesis (cf. Sec. 7.2.3), we will now survey some notion of con-
sistency and how this issue is addressed by our approach. Based on the presented semantics of action
schemata, the following definition establishes formal criteria that characterize meaningful task schema spec-
ifications and in particular prevent the construction of task schema structures that produce inconsistent state
changes.

Definition 2.6 (Consistency of Task Schemata). This definition consists of two parts with the first one
addressing operators and the second one abstract actions.

Given a language L , a model M , and a set of state-abstraction axioms ∆, a primitive task schema o(v) =
〈prec(o(v)),eff(o(v))〉 is called consistent if and only if the following conditions hold:

1. prec(o(v)) must be satisfiable. If there does not exist a model for the operator’s precondition, there
will be no state in which the operator becomes applicable and, hence, the task cannot be carried out
in the real world. This is most presumably a misconception of the application domain during the
knowledge engineering process; at least, it is a useless task definition.

2. For all atoms R(τ) that occur in prec(o(v)) or that correspond to a relation update operation in
eff(o(v)), the state feature hierarchy does not define a refinement, that means there is no axiom in
∆ with

∀v1, . . . ,vn∃v′1, . . . ,v′k R(τ)⇔ϕ1∨ . . .∨ϕm

Operators exclusively use non-abstract state features in their preconditions and effects.

3. The effects are conflict-free, that means, ∀e,e′ ∈ eff(o(v)) the following holds:

if e =+R(τ1, . . . ,τn) then e′ =−R(τ ′1, . . . ,τ
′
n)⇒τ1 6= τ

′
1∨ . . .∨ τn 6= τ

′
n and

if e = := f (τ1, . . . ,τn,τ) then e′ = := f (τ ′1, . . . ,τ
′
n,τ
′)⇒τ1 6= τ

′
1∨ . . .∨ τn 6= τ

′
n

4. The induced state transition is in accordance with the state-abstraction axioms, that means, for any
two states sand s′ for which 〈s,s′〉 |=M ,β o(v) does hold, if s |=M ,β

∧
δ∈∆ δ then s′ |=M ,β

∧
δ∈∆ δ .

Given a language L and a set of state-abstraction axioms ∆, a complex task schema t(v)= 〈prec(t(v)),post(t(v))〉
is called consistent if and only if the following conditions hold:
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1. All atoms R(τ) that occur in post(t(v)) are built over flexible symbols R ∈ R f . Since the state-
abstraction axioms in ∆ do not map flexible atoms on rigid ones, this property guarantees that the
implied state transition only affects state-dependent features.

There is however one exception to this rule concerning the term updates. Atoms over the rigid equality
relation symbols ≡Z with Z ∈ Z may occur in a complex task schema definition’s postcondition if
and only if at least one (sub-) term in the atoms’ arguments is built over a flexible symbol.

2. Analogously to the operator consistency, ∆∪{prec(t(v))} must be satisfiable. Since we require the
state-abstraction axioms to be consistent (Def. 2.3), unsatisfiability becomes a locally decidable issue
for each task’s precondition.

3. Just like the precondition, the effect specification of an abstract task must be satisfiable, too, that
means ∆∪{post(t(v))}. Since state-abstraction axioms have to be consistent (Def. 2.3), unsatisfiabil-
ity becomes a locally decidable issue for each task’s postcondition.

•

Concerning operator consistency, it has to be pointed out that conflicting elementary operations do exhibit
unpleasant peculiarities. First, we cannot distinguish, for instance, a state transition with an elementary
delete following immediately an elementary add from a state transition that does not involve the interpreta-
tion of the respective relation symbol at all. It would therefore be at least a questionable way of modelling
if we allowed for defining actions that yield the same world state, but do so via different intermediate states.
Second, there is no interpretation that satisfies multiple updates on the same term, that means, that the
operator does not represent a valid state transition.

Please also note that we do allow for tasks with implicit effects, that means, effects that are implied by
the precondition alone and rely on persistence. One example is a complex task with a postcondition of
the truth value >; the task is applicable in any state and generates an unchanged state. Permitting such
quasi-empty abstract state transitions is a technique that seems related to “stuttering” in the area of formal
verification using temporal logics [165]. On the abstract action level, no state change is perceivable while
operators on the concrete level do induce state changes. Any modeler is however well advised to employ
only trivial stuttering tasks (equal pre- and postcondition, postcondition>), because non-trivial implications
are most probably neither intended nor pretty useful. The intention aspect is an assessment of the author,
the second is a consequence of the above considerations about conflicting operator effects. It is also a
question whether or not operators with implied effects do make sense; from our point of view they do
not. We therefore recommend to perform appropriate checks on task schemata (see also future work in
Sec. 7.2.3).

Task schema definitions can be validated against the above consistency criteria in a computationally and
methodologically inexpensive manner. The construction of schemata can be accompanied by recommending
sort-safe parameter usages, etc., or a tractable off-line consistency verification can be performed on a given
set of schemata (cf. discussion of abstraction-axiom construction in Sec. 2.8). For the sake of simplicity
of the presentation, all following sections and chapters will therefore only refer to consistent task schemata
without further distinction.

2.4 Domain Models

The term domain model has been used so far in an informal way to refer to all the knowledge about the
targeted real-world application area that is considered relevant for plan generation purposes. As already
described in Sec. 1.1, every planning system uses a specific representation of the general static knowledge
and system dynamics of its application domain (and keeps it separated from the knowledge that describes the
particular episode or problem for which a plan is generated). Our framework’s domain model representation
simply combines the previously introduced specifications of the state-abstraction axioms and appropriate
actions according to the following definition:
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Definition 2.7 (Domain Model). Given a language L , a domain model is the tuple

D = 〈M ,∆,T〉
with M being the logical model structure, ∆ a set of consistent state-abstraction axioms, and T a set of
consistent (abstract and primitive) task schemata.

The set of all domain models over a language L is denoted by D . •

The term domain is often synonymously used for the application domain, the planning domain model in
general, and the concrete domain model in a specific planning system language likewise. In addition, sub-
sequent chapters will extend the domain-model structures to more advanced plan generation methods. The
particular usage of domain will however be either given unambiguously by the context or explicitly anno-
tated.

In order to ensure the definition of meaningful domain models, the axiom sets and task schema definitions
firstly have to be consistent in themselves and secondly have to match properly. In addition, any meaningful
domain model should apparently provide an in some sense complete set of task schemata such that all com-
plex tasks are implementable by the given operators. The following definition of domain model consistency
is consequently directly based on the consistency notions of the respective domain model components and
the implementation semantics.

Definition 2.8 (Consistency of Domain Models). A domain model D = 〈M ,∆,T〉 over a given language L
is called consistent if and only if the following conditions hold:

1. The state-abstraction axioms in ∆ are consistent (Def. 2.3).

2. All primitive and complex task schemata in T are consistent with respect to ∆ and the state feature
hierarchy imposed by it (Def. 2.6).

3. For every complex task schema in T the domain model provides operator definitions such that in-
stances of some of these operators constitute at least one implementation of the corresponding com-
plex task instance (p. 41).

4. Let o = o(v)1, . . . ,o(v)n be a finite sequence of operator instances from primitive task schemata in T
and let s0 . . .sn be a corresponding finite sequence of states such that 〈si−1,si〉 |=M ,β oi for all 1≤ i≤ n.
For any two such sequences of operators o and o′ and two appropriate state sequences s and s′ the
following equation holds: if s0 = s′0 then sn 6= s′n′

5. Let T = {t(v)1, . . . , t(v)n} be a finite set of complex task instances from those schemata in T that do
not carry a precondition ϕ and a postcondition ψ with |= ϕ and |= ψ . For any two such sets T and T ′
the following equation holds:

if
∧

1≤i≤n

prec(t(v)i)⇒
∧

1≤ j≤n′
prec(t ′j(v

′
j)) then not

∧
1≤i≤n

post(t(v)i)⇒
∧

1≤ j≤n′
post(t ′j(v

′
j))

•

The last two consistency conditions are also referred to as the conciseness property of the domain model.

Since in general nothing sound can be deduced or inferred from an inconsistent domain model, every refer-
ence in this document to “a domain model” should be read as “a consistent domain model” if not explicitly
stated otherwise (cf. Sec. 7.2.3). The conciseness property addresses the problem of domain models that
accidently include “hidden” duplicates of abstract and primitive task schemata, which induce the identical
behaviour in the execution environment (please note that this still allows for alternative ways of achiev-
ing goals). The ruled out action isomorphisms are regarded as severe anomalies with respect to the model
semantics because they interfere with the refinement concept that is to be introduced later in Sec. 2.16.
We would like to point out that we do however allow for models with weak abstraction, that means, non-
conciseness between complex and primitive tasks or between complex tasks with trivial conditions. Firstly,
we believe that there are justifiable situations in which an abstract action completely specifies the possi-
ble state transitions and serves as a mere place-holder for exactly one operator sequence. Secondly, we
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want to cover classical HTN planning where there is no semantic justification for appropriate implementa-
tions.

Domain model consistency is satisfied with a notion of a minimal implementation of the model’s complex
tasks, it is sufficient to provide operators for at least one implementation. But since complex tasks have a
more expressive effect representation than operators and in addition make use of state-abstraction axioms,
the question arises, whether or not the domain’s repertoire of primitive actions is able to completely capture
the power of the abstract action descriptions.

A set of implementations O = {o1, . . . ,on} for a complex task schema t(v) with non-trivial pre- or post-
condition is called complete with respect to a domain model D = 〈M ,∆,T〉 if and only if for every pair of
states 〈s,s′〉 and valuations β with s |=M ,β prec(t(v)) and s′ |=M ,β post(t(v)) the following holds: If there
exists a sequence of update function calls u1 . . .um such that su1 ◦ . . . ◦ ums′ then O contains an appropriate
implementation.

A complete set of implementations thereby “covers” all possible state-refinements. Note that a complete
set of implementations is unambiguous for correct (and hence concise) domain models, modulo variable
renaming. It has to be mentioned, that in classical HTN planning (p. 1.1.3) the set of user-defined re-
finement methods is regarded to be complete by definition. In this thesis’ view, HTN methods would
hardly ever be complete, since the abstract tasks of classical approaches do not carry pre- and postcon-
ditions (that means, they are the trivial ones |= ϕ and |= ψ) which allows for un-constrained state transi-
tions in its implementations. Thus, all possible operator sequences would be considered legal implementa-
tions.

With the definition of domain models, we can finally represent all relevant aspects of the application
domain: the terminology and concepts, the relationships between objects, and the laws of dynamics to
which the world states adhere. Domain models thereby constitute referential frames for the correspond-
ing courses of action. Hence, we are ready to introduce our notion of a “plan” in the following sec-
tion.

2.5 Plans

The course of action, the plan, is the most important data structure for any planning methodology because its
design and the reasoning techniques working on it always go hand in hand (see also introductory sections).
We have chosen a particular kind of plan representation to adopt in this thesis, and it is introduced in the
following definition: the so-called partial plan. The term “partial” originates from early works in the field
of Partial-Order Planning (Sec. 1.1.2). The name contrasts with “linear planning”, a technique that relies on
completely ordered plan steps. While partial-order planning originally simply referred to plans with partially
ordered steps, we use it in its later meaning to express that not all decisions for the represented plan entity
have been made yet: object identities are under-specified, the execution order of tasks or activities is not
finalized yet, not all causal dependencies have been cleared, etc. We will not insist on this literal distinction
in later sections; if not mentioned otherwise, the term “plan” will always be used instead and in the sense of
“partial plan”.

Definition 2.9 (Partial Plan). Given a domain model D = 〈M ,∆,T〉 and a language L , a partial plan P is
defined by the tuple

P = 〈TE,≺,VC,CL〉
A plan consists of the following components:

TE: A finite set of task expressions te = l : t(v), which are tagged instances of corresponding abstract or
primitive task schemata in T. The tag l is a label that is unique in TE for every task expression. All
parameter variables that occur in v are assumed to be unique in TE, too.

Task expressions are also denominated as plan steps.

≺: A finite set of ordering constraints tei ≺ te j with task expressions tei, te j ∈ TE. The ordering con-
straints impose a partial ordering relation on the task expressions in TE; it is interpreted as the intended
execution order of the actions represented by the task expressions.
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VC: A finite set of variable constraints. They include firstly equations and inequations of the form v=̇τ

and v ˙6=τ that co-designate and non-codesignate variables v ∈ V with terms τ over the language L .

A second family of variable constraints are the so-called co-typing constraints v ∈̇Z and non-cotyping
constraints v ˙6∈Z with sort symbols Z ∈Z . They restrict the variables to be eventually co-designated
to a term of the specified sort, respectively prohibit the co-designation to a term of the specified sort.
In this way, they can be interpreted as disjunctive co-designation constraints, respectively sets of non-
codesignation constraints, on the particular sets of constants in the domain of the referenced sort Z.

CL: A finite set of causal links tei
ϕ−→ te j between task expressions tei and te j from TE. The annotated

causality ϕ is a well-formed formula over the language L and uses only unbound variables that
occur in the parameter lists of the linked plan steps tei and te j. The causal link represents the causal
relationship between a task tei = li :ti(vi) that establishes a precondition ϕ of a task te j = l j :t j(v j) by
its effects.

This information is formally defined as follows: Let σVC be a VC-compatible variable substitution,
that means, a variable substitution that is induced by the equations in VC and that is consistent with
the inequations, the co-typing, and the non-cotyping constraints. The following two conditions then
hold for the causal link:

1. tei is a valid “establisher” of the condition, that means for any pair of states s and s′ with
〈s,s′〉 |=M ,β ti(vi) a formula ϕ ′ is generated4 by tei such that ∆∪{σVC(ϕ ′)} |= σVC(ϕ).

2. te j is a valid “consumer” of the condition if ∆∪{σVC(prec(te j))} |= σVC(ϕ).

The set of all plans over a given language L is denoted by P . •

Let us briefly discuss the choice of representation in the above plan definition: Although various optimized
data structures have been proposed in the literature (see discussion in introductory section 1.1), we opt for
the sake of flexibility and human understandability for the described universal representation. Later sections
will explain how the representation of partial plans can easily be extended in order to cover aspects of
advanced domain characteristics.

For an illustration of the previous definition, let us return to the running example of the peripheral de-
vice delivery scenario. Please recall the outlined plan in Fig. 2.1, a simple plan instance that includes
two plan steps: one for opening the box and one for unpacking the printer. According to the intended
domain model Ddevices, the plan corresponding to the depicted course of action can be represented as fol-
lows:

PFig. 2.1 = 〈{tea = la : open(ba), teb = lb : unpack(pb,bb,db)},{tea ≺ teb},
{ba =̇box,ba =̇bb, pb =̇printer_B,db =̇desk},{tea

ϕ−→ teb}〉

The annotated causality of the causal link is ϕ = Open(ba), and an appropriate set of variables {ba, pb,bb,db}⊂
V is available in the respective language Ldevices. Plan step la opens the delivered box and step lb unpacks
the printer from it. The variable constraints set the action parameters to the respective objects, so that the
execution of the induced ground instances unambiguously opens the desired box and unpacks the specified
printer. The ordering constraint and the causal link between the two plan steps represents the commitment
to an arrangement in which opening the box provides the state feature of an “open box”, which is necessary
(and in this example sufficient, too) for unpacking the printer out of the box.

If a plan P contains only primitive task expressions, that means, if all task expressions te ∈ TE are built over
primitive task schemata, the plan is called primitive, and the semantics of P is given by its so-called ground
linearizations.

Definition 2.10 (Ground Linearizations). Given a primitive partial plan P = 〈TE,≺,VC,CL〉, the ground
linearizations of P are the set of all operator sequences o1(v1) . . .on(vn) with associated valuations β that
can be obtained from P as follows:

4See the definitions of formula generation by operators (p. 39) and complex tasks (p. 41).
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1. Let te1 . . . ten be a sequence of the task expressions in TE that is consistent with the plan step ordering
in≺. For every task expression tei, 1≤ i≤ n, the operator sequence contains a corresponding primitive
task schema instance oi(vi) with the same parameters.

2. A valuation β that is associated with the operator sequence in 1 agrees with a VC-compatible ground
substitution on the task expression parameters in TE.

•

Please note that in general the ground linearizations include multiple pairs with the same operator sequence
but different valuations. This is because the variable constraints may not assign constant values to all vari-
ables and therefore multiple ground substitutions are compatible with VC. This includes in particular those
variables that are provided by the language of the underlying domain model but that do not occur in the plan
steps’ parameters or constraint sets. When we speak of the ground linearizations of a plan, we consequently
treat all pairs as one representative of an equivalence class that have same operator sequences and that have
valuations that agree on all the variables occuring in P.

The example plan PFig. 2.1 above is a primitive plan. It represents a single ground linearization, because
all variables are bound to rigid constants and the tasks are in linear order. We can apply the state transition
semantics of operator sequences (p. 39) to the ground linearization in order to compute two important sets of
states: firstly, we can identify the states in which the task sequence is executable and secondly we calculate
those states that are a result of the actions’ execution. In this sense, the following definition introduces the
concepts of executability and state generation for partial plans. To this end, it will interpret the abstract
plan steps as the disjunctive set of their implementations and these primitive plans in turn as their ground
linearizations.

Definition 2.11 (Executability and State Generation of Partial Plans). For a given domain model D =
〈M ,∆,T〉, let P be the partial plan 〈TE,≺,VC,CL〉 and PP the set of primitive plans {P1, . . . ,Pn} that is
obtained from P by substituting each abstract plan step in P by one of its implementations.
Let furthermore OP = {o11, . . . ,o1m, . . . ,on1, . . . ,onm′} be a set of operator sequences such that every oi j with
1≤ i≤ n and 1≤ j ≤mi is an element of the ground linearizations of plan Pi. The sequences in OP are also
called the primitive ground linearizations of P.

P is said to be executable in a state s ∈S if and only if for every operator sequence o1 . . .om and associated
valuation β of its ground linearizations OP, the first operator o1 is applicable in s and the precondition of
every oi with 1 < i≤ m is generated by the sub-sequence o1 . . .oi−1.

P in addition generates a set of states SP = {s1, . . . ,s|OP|} for which the following holds: For every lin-
earization o1 . . .om ∈ OP with valuation β , there is a corresponding state si in the set such that there exists a
sequence of states s′1 . . .s′m+1 with s = s′1, 〈sk,sk+1〉 |=M ,β ok for 1≤ k ≤ m, and sk+1 = si. •

According to these definitions, a non-primitive partial plan can be seen as a specification for desired operator
sequences. The concept of executability also provides a reasonable starting-point for defining consistent
plans: A partial plan P is consistent if and only if there exists at least one state s in which P is executable
(and the set of states that it generates is not empty, which is given by the implied executability of the
ground linearizations). This notion of consistency can be argued for from an application point of view: If
there are no situations in the application domain in which a plan can be carried out, then this plan must be
faulty.

This semantic-based criterion is, however, too strict and in its applicability too restricted to be useful for
plan-generation purposes: Firstly, it is too strict in the sense that the partial plans that are encountered during
plan generation are typically not executable, because the planning process is actually trying to find an exe-
cutable plan. Practically all intermediate results, independent from the implemented planning method, will
be inevitably considered to be inconsistent. There is wide range of causes for the deficiency: plans may be
completely corrupted due to inconsistent variable bindings, which does not allow for any ground lineariza-
tions, or plans need “only” one of the linearization possibilities to be eliminated.

Secondly, the criterion is too restricted with respect to its own application: working out plan executability
implies constructing all implementing primitive plans and all possible states (in order to determine whether
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or not one can be constructed such that the plan becomes executable). This certainly cannot be expected
to be computationally tractable. A realistically useful consistency concept has to evade these drawbacks by
relaxing the semantic executability criterion and by focusing more on syntactical features of the plan. On the
other hand, it must however not be weakened to an extent where executable plans can get classified as incon-
sistent ones. As a conclusion, the relaxed executability criterion has to imply consistency or, symmetrically,
inconsistency has to imply that the plan is not executable.

In the line of the preceding arguments, the following definition proposes tractable syntactical criteria that
characterize meaningful partial plans.

Definition 2.12 (Consistency of Partial Plans). A partial plan P = 〈TE,≺,VC,CL〉 is called consistent with
respect to a domain model D = 〈M ,∆,T〉 and language L = 〈Z ,≤,Rr,R f ,Fr,F f ,V ,Tp,Tc,E 〉 if and
only if the following conditions hold:

1. The transitive closure of the ordering constraints in ≺ constitutes an irreflexive, not symmetric rela-
tion5 on the plan steps in TE.

2. The variable constraints VC represent a globally consistent constraint system, that is to say, there exists
a sort-correct valuation β that relates all variables occuring in VC with rigid constants c ∈ C f in L ,
while it agrees with the equations, inequations, and sort restrictions that are formulated in VC.

3. The ordering constraints do not contradict the causal links, that means, for any causal link tei
ϕ−→ te j

in CL, there is no ordering tei ≺ te j in the transitive closure of ≺.

•

Note that the plan step parameters do not necessarily occur in the variable constraints, but since we only
consider consistent domain models, this cannot imply any variable inconsistency.

A partial plan that fails the consistency specification is definitely un-executable. The following theorem
confirms this implication.

Theorem 2.1. Inconsistent partial plans are not executable in any given state.

Proof. An inconsistent partial plan P∈P fails to fulfill at least one of the consistency criteria in Defini-
tion 2.12. If the ordering relation ≺ contains reflexive or symmetric ordering constraints between the plan
steps of P then no linearization can be found because of the cyclic paths in the transitive closure of ≺.
Similarly, an inconsistent constraint set VC does not produce any ground instance and therefore no ground
linearization can be found.

The consistency criterion for partial plans completes the representational features of domain knowledge
and thereby concludes the sections on the planning components and data structures of the formal frame-
work. With this background, we are able to proceed to address plan generation itself and its algorithmic
topics.

2.6 Refinement Planning

The following sections provide the concepts for a generic planning approach: planning by plan refinement.
Sec. 2.6.1 describes how a planning problem is specified, introduces the notion of plan refinement, and
identifies the conditions under which a refinement is a solution to a given problem. The syntactic struc-
ture for representing proper plan-refinement operations, the plan modifications, is presented in 2.6.2. As
a criterion for the application of the modifications, Sec. 2.6.3 defines flaws as the syntactic incarnations of
the deficiencies that deter a plan from being a solution; they literally “point” to critical components of the
plan. Sec. 2.6.4 subsequently examines the connection between flaws and modifications in general, and

5The term partial order can be easily confused with the mathematical concept that refers to reflexive, antisymmetric, and transitive
relations, ≤: IN× IN, for instance. Planning literature derives its specific terminology from the ordering relation ≺, which orders
the plan steps partially.
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under which circumstances the former call for the application of the latter. With the functional compo-
nents that provide modifications and flaws for building the search space in a generic planning algorithm,
this section finally presents the constituents of a framework for refinement-based planning. It details the
design of these components and their interaction during plan generation with particular consideration of
search control. The presentation concludes with a discussion on the algorithmic properties of the resulting
system.

2.6.1 Planning Problems, Plan Refinements, and Solutions

In the introductory chapter about AI planning (Sec. 1.1) we presented the key steps in applying planning
methods: the definition of a formal model of the application domain, the specification of the problem in
terms of the formal model, and the deployment of a generic model-based plan generation algorithm that
attempts to develop a plan out of the problem specification that satisfies defined solution criteria. As it has
been stated before, design choices in all these steps depend on each other. For the sake of readability, we
present them in the above order.

While it is common for the planning literature to include the initial situation in the problem specification, the
essential difference between practically all planning approaches is the choice between goal oriented and task
oriented problem definitions. Goal oriented problems are specifications of desired world states, that means,
a course of action is to be constructed such that its execution will change the world state until it finally
matches the specified state. Task oriented problems specify an abstract plan for which concrete courses of
action are to be found according to procedural knowledge, a way of specifying that is primarily used in HTN
planning. The presented approach relies on a hybrid representation that allows for both the specification of
an abstract initial plan together with the declaration of a goal state.

Definition 2.13 (Planning Problem). A planning problem π is given by the structure

π = 〈D,sinit ,sgoal ,Pinit〉

where D = 〈M ,∆,T〉 is a domain model, sinit ∈S with sinit |=M ,β
∧

δ∈∆ δ for any valuation β is an initial
state, sgoal is a goal state specification, and Pinit = 〈TEinit ,≺init ,VCinit ,CLinit〉 ∈P is a consistent initial
partial plan.

The goal state specification sgoal is a (satisfiable) formula over L .

The set of all planning problems is denoted by IΠI. •

It is worth pointing out that goal state specifications may refer to abstract state features, that means, that
atoms that occur sgoal for which ∆ provides refinements. In terms of expressivity, abstract goals cor-
respond to disjunctive goals; as the disjunction is combined with a well-founded axiomatic basis, ab-
stract goal specifications substantially increase the expressive power and application range of our ap-
proach.

In the domain of our running example, a definition for a planning problem can be given as follows:πdevices =
(Ddevices,sinit ,sgoal ,Pinit) with

sinit |=M ,β Sells(vendor_X,printer_B)∧∀p.¬Connected_To(p,pc_5) . . .

sgoal = Connected_To(printer_B,pc_5)∧Running(printer_B)
Pinit = 〈{la : set_up_peripheral(pa)}, /0,{pa =̇printer_B}, /0〉

The initial state describes the world at the beginning of plan execution: The personal computer initially
is not connected to any peripheral device. It is a peculiarity of an initial state that it typically serves as a
reference for all rigid terms and atoms as well. It is therefore also used to specify rigid symbols although
their meaning is already given by the domain model’s interpretation. In the example above, the initial world
situation consequently includes that the vendor for a specific printer model is known, but this is assumed to
be invariant against every possible course of action (SellsVendorThing ∈Rr). Generally spoken, the problem
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is to find a primitive partial plan6 that is a concretization of the initial abstract sketch (the abstract set-up
action), that is executable in the described situation, and that finally yields a world state that matches the
demands expressed in the goal. In the example this means that a particular printer is attached to a specified
personal computer and running. “Finding a primitive plan” is not to be done by a blind putting-together of
plan elements but by a systematic and semantically sound tool: plan refinements.

From a technical point of view, the idea behind the refinement of plans is to start with an abstract or rather
underspecified plan fragment that represents a large set of candidate action sequences and to manipulate it
in a way that narrows down the candidate set (cf. Sec. 2.6 and [147]). A partial plan is seen in this context
as a representation of constraints that shape the structure of the candidate set. Partial plans are consequently
mapped onto operator sequences that are consistent with the constraint sets (orderings, variable constraints,
etc.).

Our presented approach however wants to provide a maximum freedom with respect to the deployed plan-
ning techniques and therefore assumes that it is not foreseeable what kind of additional constraints and
data structures will be involved in extended or advanced planning methods. In order to retain the neces-
sary flexibility, we do not define refinements over plan candidates but make use of their state transition
semantics and therefore describe refinements by the consequences of plans during execution7: Which state
sequences are plausible to represent an execution trace of the current plan? A refinement is consequently
the systematic exclusion of undesired execution paths, that is to say, refining the observable system be-
haviour.

Firstly, it has to be specified, under which circumstances a state sequence is regarded to represent a “plausi-
ble” execution trace. We will call this property compatibility, and it has to capture two aspects: when do two
succeeding states represent a transition of a task (basically the inverse of the state transformation semantics
of operators), and do these transitions occur in an order that is consistent with the action ordering defined in
the partial plan? To this end, we introduce the notion of compatibility on operator sequences, which are, for
example, the primitive ground linearizations of a partial plan.

Definition 2.14 (Compatible State Sequences). Given a domain model D = 〈M ,∆,T〉, a finite sequence of
operators o = o1(v1) . . .on(vn), and a valuation β , a finite sequence of states s = s1 . . .sm is called compatible
with o if and only if the following conditions hold:

1. For each operator oi(vi) with 1≤ i≤ n there exists an index 1≤ j ≤m in the state sequence such that
〈s j,s j+1〉 |=M ,β oi(vi) holds. We call the index tuple 〈i, j〉 a compatible transition point.

2. All states with an index k that does not occur in the set of compatible transition points are called
anonymous transition points, that means, there is an instance of an operator schema o(v)′ in T and an
valuation β

′ that agrees with β on all variables occuring in v such that 〈sk,sk+1〉 |=M ,β ’ o(v)′ holds.

3. For all compatible and anonymous transition points 〈i, j〉 and 〈i′, j′〉: if i < i′ then j < j′.

•

An example for a compatible state sequence is illustrated in Fig. 2.6. Note that a state sequence is only com-
patible if those state transitions that are not covered by the operator sequence are in principle performable
by adding operators from the domain model. The state sequence s does consequently not contain any “im-
possible” transitions.

We are now ready to extend the concept of compatible state sequences to general, non-primitive partial
plans, thereby defining what a plausible series of situation changes means.

Definition 2.15 (Intended System Behaviour). Given a domain model D and a partial plan P, the intended
system behaviour specified by P is the family of state sequences that are compatible with at least one operator
sequence in the primitive ground linearizations of P.

The intended system behaviour is denoted by the function beh : P →S ∗. •
6See Sec. 2.8 for a discussion about whether the solution plan necessarily has to be a primitive partial plan or not.
7This flexibility argument is also used in the context of plan metrics that define the similarity of plans. Recent investigations in this

area show that viewing plans as state change inducing behaviour generators rather than reducing them to the concrete data structures
provides the flexibility that is required to integrate various plan representation and generation paradigms [66].
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...

... ......

... ... ...s1 sj sj+1 sj′+1sj′ sj′′ sj′′+1 sm

〈sj , sj+1〉 |=M,β oi(vi)

oi(vi) oi′(vi′) ok(vk)

Figure 2.6: An example for compatible state transitions. Operators oi(vi) and oi′(vi′) are supposed to origi-
nate in the operator sequence, ok(vk) is a new instance from the domain model’s action repertoire.

If a plan P has an empty behaviour, that means, if beh(P) = /0, then the plan is apparently inconsistent
and vice versa. For instance, consider the case when the ordering relation becomes cyclic or the variable
constraint set co-designates variables to multiple constants: no compatible state sequence can be given for
an empty set of primitive ground linearizations. This view obviously coincides with plan consistency as
specified in Def. 2.12. The same holds for executability: For a plan P = 〈TE,≺,VC,CL〉 that is executable
in a state s, every subset of P’s specified behaviour contains at least one state sequence s = s0, . . . ,sm with
s = s0 and m = |TE|. This element of the behaviour is completely explainable by the plan in the sense that
it does not contain anonymous transition points.

Given the definition above, refining a plan means concretizing its intended system behaviour. We can also
think of viewing the refinement process as the step-wise exclusion of undesired alternatives of a plan’s
behaviour and therefore a narrowing down of the initial set of possible behaviours to a smaller set that
meets the objectives given in the problem specification π . The following definition captures this no-
tion.

Definition 2.16 (Plan Refinement). For a given domain model D, a plan P′ is a refinement of another plan P
if and only if the intended system behaviour specification of P subsumes that of P′:

beh(P′)⊆ beh(P)

•

Any plan P′ is trivially a refinement of the empty plan P/0 = ( /0, /0, /0, /0). An empty plan can be re-formulated
as a plan that contains one complex task expression that has been built from a task schema with empty pre-
conditions and effects. As stated before, any plan is an implementation of such a task expression.

Note that plan refinements are defined as non-strict reductions of the system behaviour sets. This may ap-
pear questionable to some extent as it permits the establishment of plateaux during a sequence of performed
refinements. The motivation for our refinement-design being non-strict will be addressed later in the def-
inition of specific plan-refinement operations (see Chap. 3) and other plan manipulation mechanisms (see
inferences introduced in Def. 2.40). In all these contexts, auxiliary constraint sets are manipulated, which
affects state sequence compatibility of plans only indirectly through subsequent refinements. From the point
of view of the partial plan, (temporarily) no change in the intended system behaviour occurs, although a
refinement has been performed.

A second important consideration are the implications of domain model consistency (Def. 2.8) on the in-
tended system behaviour of a plan. The conciseness of the domain model accomplishes the unambiguity of
state sequences that are induced by operator sequences and thereby provides the unambiguity of the intended
system behaviour beh(P). Following this argument, a development process of partial plans that is based on
a reduction of the corresponding behaviour space constitutes a systematic way of plan generation. Firstly,
no plan occurs twice in subsequent refinements (there are specific operation sequences associated with the
eliminated state sequences and these operations can therefore not be re-introduced) and secondly, every plan
has a deterministic set of refinements (there will be no oscillation between refinements that, for example,
exchange duplicate tasks).

The first property can also be referred to as the monotonicity of refinements and will be addressed in later
sections. Concerning conciseness with respect to complex actions, it has to be noted that this property is not
mandatory for our notion of consistency. It is however to be considered a good style of model specification
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and at least helpful for modelling purposes in order to avoid confusion. Non-concise complex task schemata
typically occur in HTN-like planning, when pre-defined implementations for complex tasks are developed
“bottom-up”. In this modelling anomaly, the domain engineer tries to subsume and structure procedures in
abstract action definitions without paying too much attention to an organized knowledge acquisition proce-
dure (see also “methods”, their specification principles, and their usage in Sec. 1.1.3). Although the modeler
probably intends to produce disjunct subsets of system behaviours, isomorphic complex task schemata may
occur, indirectly through the use of state-abstraction axioms or directly by relaxing precondition and effect
specifications (for example, when applying the unique main sub-action modelling method [291]). From
our semantics point of view this ambiguity is not critical, at most only obscure, and at least worth to be
reported to a modeler (see Sec. 7.2.3). We nonetheless allow for it, because from a conceptual perspec-
tive it is (1) arguable that at some level of abstraction, courses of action may become ambiguous and (2)
reasonable in HTN-like planning systems, which bring user-defined refinements to the table that restrict the
implementation possibilities to disjunct behaviours.

Now that we have defined what a planning problem specification looks like and what the semantics of a
plan refinement are, we are ready to give a meaning to what a solution to a problem actually is when having
refinements as plan manipulations at hand.

Definition 2.17 (Solution). Given a planning problem specification π = 〈D,sinit ,sgoal ,Pinit〉, a partial plan P
over domain model D is called a solution to π if and only if the following conditions hold:

1. P is a refinement of Pinit (Def. 2.16).

2. P is executable in sinit (Def. 2.11).

3. All states SP = {s1, . . . ,sn} that are generated by P satisfy the goal state specification for any VC-
compatible valuation β , that means, ∀s ∈ SP : s |=M ,β sgoal (Def. 2.11).

•

This definition suggests to use plan-refinement generating steps in order to produce partial plans that are
candidates for meeting the solution criteria, because this guarantees to meet criterion 1 automatically in
contrast to alternative, more complicated behaviour calculations. Please note that according to the refinement
definition (any plan is a refinement of the empty plan), a problem specification with an empty initial plan
correctly represents a classical problem specification in the partial-order planning paradigm and the solution
definitions coincide (cf. Sec. 1.1.2).

A commonly preferred alternative circumscription for a solution in plan-space planning is the so-called solu-
tion plan (cf. [118, Chap. 5] and [279]). The basic idea is to begin the plan generation process with encoding
the problem specification in a so-called null plan. This is an ordinary partial plan in which the initial state
is represented as a designated start task that bears the initial state features in its effects, thereby “setting up”
the initial world state. Similarly, a designated goal task stands for the goal state description and carries the
respective features in its preconditions. The null plan is then the input to, for example, a plan-refinement
algorithm that uses causal links for goal establishment book-keeping (see Sec. 1.1.2). A solution is found if
the current plan’s causal structure is complete and unthreatened and if the current plan’s ordering constraints
and variable bindings are consistent. Translated into the above solution definition of our framework, exe-
cutability in the initial state is reduced to executability in the empty state sε in which every flexible relation
is interpreted as the empty set and every flexible term as undefined8. The generation of a goal state is conse-
quently reduced to executability of the appropriate goal task. Please note that, although the representations
are equivalent, there is a subtle conceptual difference between them: it is possible to include causal links in
the null plan representation that have their origin in the start task or that end in the goal task. This form of
commitment is not directly expressable in our classical problem definition. In terms of expressivity this dif-
ference is however neglectable and can be bridged by a simple model adaption9.

8We may assume that the language provides an appropriate symbol for every sort in the functions’ ranges. Any equation in which an
unknown value occurs cannot be evaluated.

9The extension is a transformation that adds unique preconditions and effects to those task schemata that are to be “linked” to the
initial and goal states. This “technique” is, for example, applied during expressiveness analyses that compare POCL with HTN
planning [83, Chap. 5].
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The motivation for the uniform representation of the planning problem and the plan data structure that is used
during the search procedure is complexity: It is widely regarded computationally too expensive to verify the
current plan’s executability and goal satisfaction during the plan generation process by applying sound but
costly techniques such as the modal truth criterion [54]. Operations on the causal structure of the plan do not
need to distinguish between persistence of initial state facts and task effects, because both are represented by
causal links; the analogous argument holds for fulfilling goal state features and task preconditions. We will
briefly introduce the idea of a uniform problem representation and a solution plan.

Definition 2.18 (Null Plan). For a given problem definition π = 〈D,sinit ,sgoal ,Pinit〉, let the planning lan-
guage L contain two designated primitive task labels oinit and ogoal ∈ Tp. Given the empty state sε and
the initial state sinit , let u = u1 . . .un be a sequence of update functions such that sε u1 ◦ . . . ◦ un sinit and let
e = e1 . . .en be the sequence of elementary operations that corresponds to u. The initial state and the goal
state specification induce two operator schemata oinit() = (>,e,ε) and ogoal() = (sgoal ,ε)

The so-called null plan Pnull = 〈TEnull ,≺null ,VCnull ,CLnull〉 is then obtained from the initial plan Pinit =
〈TEinit ,≺init ,VCinit ,CLinit〉 as follows:

TEnull =TEinit ∪{teinit = linit : oinit(), tegoal = lgoal : ogoal()}
≺null = ≺init ∪{teinit ≺ te|∀te ∈ TEinit}∪{te ≺ tegoal |∀te ∈ TEinit}

VCnull =VCinit

CLnull =CLinit

•

We do not necessarily require all task expressions of the initial plan in the problem definition to be ordered
between the initial and goal task but it is intuitive to do so. The following definition of a solution plan shows
that the task artifacts for the initial and goal state are mere auxiliary constructs from the point of view of a
plan generation process.

Definition 2.19 (Solution Plan). Given a partial plan Pnull that has been obtained from a planning problem
π , a partial plan P = 〈TE,≺,VC,CL〉 is called a solution plan if and only if

1. P is a refinement of Pnull and

2. P′ = (TE \ {teinit , tegoal},≺′,VC,CL′), with ≺′ and CL′ containing all constraints and links from P
except for those referring to the removed task expressions, is a solution to π .

•

The second solution-plan criterion still necessitates an explicit problem specification. The following theorem
therefore enables more handy mechanisms by providing a solution criterion for any plan that is a refinement
of a null plan without a reference to a planning problem.

Theorem 2.2. A solution plan for a null plan Pnull that has been obtained from a problem specification
π = 〈D,sinit ,sgoal ,Pinit〉 is a refinement P′ of Pnull that is executable in the empty state sε .

Proof. The theorem follows directly from the construction of the null plan: The initial state task is exe-
cutable in sε and sets up a state that is equivalent to the initial state sinit and the goal state description sgoal
is equivalent to the precondition of its task representation.

This result has practical consequences: Given that only “correct” plan refinements are provided, using the
solution plan metaphor reduces the effort of checking for a solution tremendously. Subsequent chapters
that deal with implementations of our framework will therefore use synonymously the notions of problem
and null plan, respectively of solution and solution plan. For the rest of this chapter’s presentation we
will however hold on to the “conservative” problem and solution definitions for the the following two rea-
sons: Firstly, the initial task has to be ignored in every correctness consideration, because an initial state
– and with it the initial task’s effect – typically includes rigid symbols. The same issue arises when ab-
stract goal state specifications are used and the goal state task’s precondition consequently contains atoms

53



2 Formal Framework

for which the decomposition axioms provide refinements. Both is strictly speaking an illicit construction
of task schemata (Def. 2.6) but can be tolerated in an implementation for this fixed exception. The second
dilemma lies in the initial and goal state being part of the problem description, so the corresponding initial
and goal task schemata become problem-specific parts of the domain model. Accepting this unintended
abuse of model components as part of the problem description is not too problematic, the anomaly should
however be considered when referring to problems and domain models that make use of these representa-
tions.

The question remains how to transform plans systematically into refinements. The following section in-
troduces an explicit representation of the available plan generation options that accomplish such a plan
manipulation.

2.6.2 Plan Modifications

For the representation and eventually mechanization of a generic production of plan refinements, we are
defining so-called plan modifications. They provide a data structure for refinement operations that de-
scribes the proposed change to the plan and does so in a way that guarantees the changes to result in
a refinement. As a prerequisite, some structural entities of partial plans have to be defined: A compo-
nent of a plan P = 〈TE,≺,VC,CL〉 is an element of the set TE∪≺∪VC ∪ CL. This means a component
is either a task expression in TE, an ordering constraint in ≺, a variable constraint in VC, or a causal
link in CL. The term sub-component denotes the constituents of components. The sub-components of
a task expression are its task symbol, parameters, and precondition and effect formulae. The latter, in
turn, consist of further sub-components, eventually this are literals/atoms with their (possibly nested) argu-
ments terms, and so forth. Sub-components of an ordering constraint are the two involved task expressions
and their respective sub-components. Similarly, variable constraints have their involved variables, terms
and sub-terms, and sort symbols as sub-components, while causal links are constituted of the linked task
expressions, their respective sub-components, and the annotated causality literal with its argument sub-
components.

Definition 2.20 (Plan Modification). For a given given partial plan P = 〈TE,≺,VC,CL〉 and domain model
D over a language L , a plan modification is the tuple m = 〈E⊕,E	〉 where

1. E⊕ is a set of new plan components over D and L such that E⊕∩ (TE∪≺∪VC∪CL) = /0. This set
is also called the set of elementary additions.

2. E	 is a set of components in P with E	 \(TE∪≺∪VC∪CL) = /0. It is the set of elementary deletions.

3. No sub-component in E⊕ is a component in E	.

4. P′ = app(m,P), is a refinement of P in agreement with Def. 2.16.

5. E⊕∪E	 6= /0, that means m does not constitute a trivial refinement.

The set of all plan modifications over a given language L is denoted by M.

The application of a plan modification is thereby characterized by the generic plan transformation function
app : M×P →P . Its arguments are a plan modification m = 〈E⊕,E	〉 and a plan P for which it returns
a plan P′ that is obtained from P by adding the elements of E⊕ to and removing those of E	 from the
respective component set. •

Note that the above definition criteria 1 and 2 imply that an alteration in the execution order of the ele-
mentary modifications in E⊕ and E	 does not result in a different plan. Combined with criterion 3 this
entails that for a plan modification m and partial plan P, the plan P′ = app(m,P) is a partial plan in accor-
dance with Def. 2.9. This includes in particular that all components that are referenced in P′ do exist, for
instance, all task expressions that are sub-components in ≺′ will occur in TE ′. If in addition criterion 4
holds, the plan modification is not only a mere refinement of the plan but also one that is comprehensibly
obtainable from it. Criterion 5 finally rules out empty modifications that do not impose any change to the
plan.
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Note that there exists only a finite number of distinct proper plan modifications10 for any given plan over any
given domain model and language. Since the symbol sets over L are finite, all domain models and problem
specifications are finite and with them the set of describable (sub-) components.

Definition 2.21 (Applicability and Obtainability Sets). Given a domain model D and a plan modification m,
the set of all plans for which m is a proper plan modification is called the applicability set of m. The set of
plans that are generated by m out of the plans in the applicability set is referred to as the obtainability set of
m. •

It follows directly from definitions 2.20 that for any domain model and any plan modification m, if P is
in the applicability set of m and P′ = app(m,P) then m is not applicable to P′. This is because m’s E sets
are not empty and therefore all elements from E	 will be not available in P′, respectively will be already
present for E⊕. As a consequence, the applicability and obtainability sets are disjoint for any plan modifi-
cation.

An instance for a plan modification in our running example of the peripheral device scenario is the following
plan modification:

mexmp = ({la : set_up_peripheral(pa)
Running(printer_B)−−−−−−−−−−−−→ tegoal}, /0)

It is applicable in the example problem definition on page 49 (remember the problem is given in the null
plan representation) and adds a causal link to πdevices.

We will now investigate, how plans can be developed by subsequently applying plan modifications.

Definition 2.22 (Plan Refinement Space). A plan refinement space is a directed graph with partial plans
as vertices and plan modifications as edges. An outgoing edge from a vertex P in the plan space is a plan
modification for the transformation of P into a successor partial plan P′ with P′ = app(m,P).

Let Mx = {mx.0,mx.1, . . . ,mx.n} be a set of plan modifications for a given domain model D and plan Px. The
set of plans obtained from Px by applying the modifications in Mx is then given by the set {Px.0,Px.1, . . . ,Px.n}
with Px.i = app(mx.i,Px), 0≤ i≤ n. In this way, a family of plan modifications M =

⋃
x Mx generates the plan

refinement space over a given plan P0 as depicted in Fig. 2.7. •

Plan P0 in Fig. 2.7 is, for instance, in the applicability set of the 0n-many plan modifications m0.0, m0.1, etc.,
to m0.n. The result of applying, for example, m0.0 to P0 is the plan P0.0. This plan is in turn in the applicability
set of modifications m0.0.0 to m0.0.n, and so forth.

Note that exactly one plan is generated from each modification’s obtainability set and that all direct suc-
cessor plans of a given plan are distinct, since the modification application function is unique (and the sets
are duplicate-free). It is also worth mentioning that for any plan P with modifications m1 and m2, m1 6= m2
the following holds: app(m2,app(m1,P)) = app(m1,app(m2,P)). A plan refinement space can consequently
contain duplicates in different subspaces. This issue will be addressed in the discussion of the systematicity
property of the plan generation process (Sec. 2.8).

One problem that has to be addressed is that of infinite paths in a refinement space, respectively duplicate
plans on a particular refinement path. This problem occurs for plan modification families in which mutually
neutralizing modifications are provided for subsequent plans. Although such a refinement space can be
regarded as to be pathological, it appears however inevitable to think about precautionary measures: If
mutually neutralizing plan modification cannot be ruled out by construction, an accidental incident of the
anomaly cannot be prevented in view of a potentially large number of contributing plan modifications.
The dilemma behind this phenomenon is rooted in the definition of plan refinements (Def. 2.16) to be
non-strict behaviour reductions. Manipulations of a plan’s causal link set or of other additional constraint
sets in extended framework implementations do not necessarily reflect immediately in the intended system
behaviour. Restricting the refinement definition is however not an option, because if only proper subsets of
intended system behaviours implied a refinement, the modularity and flexibility of the framework would be
10In the strict sense, all plan modifications are proper by definition. We sometimes will use the term “proper” to emphasize that

the modification structure fulfills all defined requirements or if the given context requires to contrast regular modifications with
non-regular structures.
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{m0.0, ..., m0.n}

P0.0 {m0.0.0, ..., m0.0.n}

P0

P0.n{m0.n.0, ..., m0.n.n}

P0.0.0
{m0.0.0.0, ..., m0.0.0.n} P0.0.n

{m0.0.n.0, ..., m0.0.n.n}

...

...

Figure 2.7: The plan refinement space built over a plan P0.

limited. Later chapters will present some implementations that explicitly benefit from this design. For the
following sections we will therefore introduce a necessary criterion for the generation of plan modifications
in order to exclusively provide plan modifications that do not induce cyclic refinement paths. We will
consequently revisit this topic when dealing with the generation of plan modifications and describe how to
construct plan modifications that comply with the criterion. Note that all plan modifications that simply add
task expressions, variable constraints, and ordering constraints are necessarily acyclic due to domain model
conciseness (Def. 2.8) and due to the monotonicity of the constraint systems; these are in practice the vast
majority of plan modifications.

In the line of the above arguments, the following definition specifies the criteria that have to be considered in
order to provide meaningful plan modifications. They are also valuable for controlling the size of a resulting
refinement space by a finite bound on the length of modification application paths.

Definition 2.23 (Complete and Acyclic Plan Modification Families). Given a planning problem specification
π = 〈D,sinit ,sgoal ,Pinit〉, a family of plan modifications M =

⋃
x Mx is called complete if and only if all

solutions Psol for π are included in the plan refinement space that is generated by M from Pinit .

A family of plan modifications M =
⋃

x Mx is called acyclic with respect to a given partial plan P if and only
if on all paths in the refinement space over P that is generated by M, there are no two modifications mx and
mx.y such that E	x ∩E⊕x.y 6= /0. •

The completeness of plan modification sets is not necessarily related to the completeness of the plan gen-
eration process itself – including approaches that are based on traversing the plan refinement space via the
above defined plan modification families. In the context of our plan modifications, the term completeness
means that the generated plan refinement space contains all solutions according to the generic state-transition
based view on the domain model. That is to say, the refinement space that is generated over the initial plan
contains all refinements that are executable in the given initial state and that satisfy the goal specification. It
has to be noted that not all planning paradigms support a complete family of plan modifications in this view.
For example, HTN planning (p. 1.1.3) in its purest form is explicitly not interested in finding “whichever”
solutions but only those that are covered by the HTN-specific user-defined “expansion” refinements. The
concept of completeness with respect to the plan generation process only addresses those solutions that are
actually covered by a given not necessarily completed refinement space. This will be discussed in more
detail in Sec. 2.6.4. To cut a long story short: It is possible to perform a complete search over an incomplete
plan refinement space, and vice versa.
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The acyclic property is an alternative formulation of “no plan on any path is equivalent to one of its refine-
ments”. Since the verification of plan equality is computationally extremely hard11, we make use of the
above constructive criterion. It is easy to see that the structural restriction for plan modifications implies
that for any acyclic family of plan modifications and for any two plans with Px.y = app(mn, . . .app(m0,Px))
the inequation Px 6= Px.y holds.

Using acyclic plan modifications yields the desired result: the depth of the refinement space is bound, as it
is shown in the following theorem.

Theorem 2.3 (Finiteness of Plan Refinement Spaces). Any plan refinement space generated by an acyclic
family of plan modifications M =

⋃
x Mx from a partial plan P is finite.

Proof. Because of the finiteness of the logical model, there exists only a finite number of plan modifications
for any plan on the paths in the refinement space (there is only a finite number of components that can be
added or removed). That means, the number of branches in the refinement space is bound by the number of
proper plan modifications for any node. Since the plan modification family is acyclic, no plan components
can be re-introduced once they have been removed from P or one of its refinements. The number of plans
that can be generated along a specific path starting in plan P is therefore bound by two times the number of
components expressible with the used language and domain model – in the worst case all components are
added to some refinement of P and removed later from sub-refinements.

The upper bound in the previous proof over-estimates the path length by several orders of magnitude, be-
cause it does not take into account the refinement property of proper plan modifications. But nevertheless,
the result holds and therefore traversing the refinement space is terminating in our framework (assuming a
systematic search procedure).

2.6.3 Flaws

A generic planning procedure can be easily formulated with the previously introduced plan modifications:
Given the initial plan Pinit of a planning problem π , firstly the refinement space over Pinit is generated. After
that all paths in the tree are to be followed until either a refinement is reached that satisfies the solution
criteria or an inconsistent plan is encountered. In the latter case, search is resumed on another path. It
is easy to see that even if plan modifications are selected in an absolute chaotic process, solutions will
eventually be found (provided that the search schema is systematic and complete, see Sec. 2.6.4), but of
course it has to be expected to do so with a very poor efficiency. Meandering through the refinement
space impends to get entangled in, albeit finite, arbitrary long modification paths that do not cover any
solution. We therefore aim at performing a systematic way of exploration that uses rational and solution-
oriented criteria for the application of plan modifications to a plan structure. In order to provide such
criteria, we will now define the flaw data structure for a precise translation of the problem specification
into deficiencies in a partial plan, that is to say, a representation of evidence for the (expected) violation of
solution criteria.

Definition 2.24 (Flaw). For a given partial plan P and planning problem π over a domain model D, a flaw f
is a finite set of (sub-) components in P.

The set of all flaws is denoted by F. •

Chap. 3 will present a variety of flaw definitions that ranges from single component references to larger sets
of plan elements. For instance, the null plan obtained from the example problem definition on page 49 does
not satisfy the specified goals, and therefore the goal task is not executable: A flaw to express this deficiency
can be formulated as fexmpA = {tegoal} or fexmpB = {Connected_To(printer_B,pc_5),Running(printer_B)},
and so on. However, while plan modifications have an operational semantics for their content, flaws do not
have any corresponding grounding in the plan structures. This hinders a strong notion of flaw correctness
(for instance, “plans of kind x call for flaws with element y”) because flaws are so far nothing but unspecified

11Plan equality can be reduced to the graph isomorphism problem. Although it is not NP-complete, it is nevertheless in NP and
therefore a probably hard problem [156].
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deficiency markers. At least, a notion of flaw consistency can be deduced from the intended purpose: flaws
should be formulated properly in terms of the given plan and domain model and they shall not give false
negative evidence to solutions.

Definition 2.25 (Consistency of Flaws, Flawed Plans). For a given domain model D and planning problem
π , a flaw f = {e1, . . . ,en} is called consistent with respect to a partial plan P, if and only if all elements that
are referenced by the flaw are components or sub-components of P and if in addition P is no solution to π . •

Since the symbol sets over any language L are finite – and therefore all domain models and problem
specifications are finite and with them the set of describable (sub-) components – there exists only a finite
number of distinct (consistent) flaws for any given plan and problem.

The notion of singular flaw consistency with respect to a plan can be lifted to families of flaws for sets of
plans.

Definition 2.26 (Consistent and Complete Flaw Families). Let P̂= {P1, . . . ,Pn} be a set of partial plans, and
let F̂ =

⋃n
i=1 Fi be a family of flaws such that each subset Fi is associated with plan Pi for 1≤ i≤ n.

F̂ is called consistent with P̂ for a given planning problem π if and only if all flaws f ∈ Fi for 1≤ i≤ n are
consistent with their associated plan Pi.

A family of flaws F̂ that is consistent with a set of partial plans P̂ for a given planning problem π is further-
more called complete with respect to π if and only if for every plan Pi with 1≤ i≤ n the following holds: if
Pi is not a solution to π then Fi 6= /0. •

Complete plan modification families are intended to systematically build a plan refinement space over a
problem description. Analogously, the purpose of the above counter-part of Def 2.23 is to provide a corre-
sponding consistent deficiency assessment: Given a flaw family that is consistent and complete, no solution
is erroneously identified as being faulty and no faulty plan ever passes un-marked.

2.6.4 Strategic Refinement Planning

With the above defined flaws and modifications, it is now possible to operationalize a refinement-planning
process that is based on plan-modifications. Their explicit representation suggests a mechanism that de-
cides which deficiencies in a given plan are to be eliminated when and how. The “which” part is cov-
ered by the flaws, the “how” by the plan modifications. What is still missing, is the “when” part: a sys-
tematic selection of appropriate plan modification steps for a better informed traversal of the refinement
space.

Under which conditions is a plan modification an appropriate candidate to eliminate a given flaw? Apart
from the concrete plan at hand, it is known that some classes of modifications address particular classes
of flaws while others do not. In order to create suitable subsets of flaw and modification individuals for a
given plan and domain model (and in order to make the plan generation process operational), we will now
associate flaw and modification classes with respective groups of functions that are responsible for their
computation. This design encapsulates both the detection of solution criteria violations and the computation
of possibly solving modifications. Thereafter we will examine their relationship.

Definition 2.27 (Detection Function). Given a partial plan P and a planning problem π , a detection function
is the function

f det
x : P× IΠI→ 2Fx

that returns flaws of a given class x with Fx ⊆ F.

The set of all partial plans that are flawed by representatives of class Fx with respect to π is called the affected
set of Fx. It is defined as PFx = {P∈P| f det

x (P,π) 6= /0}. •
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For the simplicity of presentation, the implementations that are presented in the following chapter assume
that the planning problem is encoded as a null plan, that means, the flaws are interpreted as whether or not
the current plan is a solution plan (see Def. 2.19 and 2.18). The respective sections will consequently use
detection functions with a reduced signature that omits the explicit problem specification. We furthermore
suppose that there exists exactly one flaw detecting function for each intended class of flaws, although
it is possible to provide function definitions that address only a partition Fx′ ⊂ Fx in the sense of class-
specific specialists. In the following we are consequently presume that every detection function returns
every possible flaw of its intended class.

The following definition characterizes those detection functions that behave consistent with the definition of
flaws as indicators for solution criteria violations.

Definition 2.28 (Soundness of Detection Functions). A detection function f det
x is called sound if and only if

for every partial plan P and problem π it only creates flaws of class x that are consistent with P. In particular:

∀π ∈ IΠI, ∀P∈P : if P is a solution to π then f det
x (P,π) = /0

This is equivalent to the statement that no solution plan P is in the affected set of Fx. •

Soundness has two immediate impacts on the perception of detection functions: First, the affected set of any
sound detection function is a proper subset of the set of all plans, that means for all Fx⊆F we find PFx ⊂P .
This is a direct consequence from the fact that there exist some trivial problems for any consistent domain
model. For these problems exist trivial solutions which in turn must not be in the affected set of a sound
detection function.

The second implication is not directly provided by soundness, however its usefulness is only given for sound
detection functions: sound detection functions are monotonic. For any two given plans Pa and Pb with plan
b being a refinement of a, let a detection function diagnose a flaw f in a but not in b. If the detection
function is sound then there is no refinement of Pb in which the flaw will be discovered. Monotonicity is an
important characteristics of sound detection functions, because it means that flaws are resolved “once and
for all”.

This valuable result is worth a dedicated theorem:

Theorem 2.4 (Monotonicity of Detection Functions). A sound detection function f det
x is monotonic with

respect to plan refinements:

∀π ∈ IΠI, ∀f ∈ F, ∀Pi,Pj,Pk ∈P :

beh(Pi)⊇ beh(Pj)⊇ beh(Pk)∧f ∈ f det
x (Pi,π)∧f 6∈ f det

x (Pj,π)⇒f 6∈ f det
x (Pk,π)

Proof. Let the partial plan Pi be in the affected set PFx of detection function f det
x and consequently flawed

by some flaw f for a given problem π . That means, that Pi is in an equivalence class for some argument, say
Q, that implies the falsification of some solution criterion in Pi. Argument Q thereby sets up equivalence
classes of intended system behaviours that are flawed for some common reason. If a refinement of Pi, say
plan Pj, is however not applicable to argument Q, its reduced behaviour beh(Pj)⊂ beh(Pi) does not longer
contain members of Q’s domain. Consequently, Q will not hold for any intended behaviour of succeeding
refinements Pk, hence any such refinement Pk will not be flawed by f.

Fig. 2.8 illustrates monotonicity in a plan refinement space with the red point representing plan Pi in the
above proof. The three depicted areas in the refinement space stand (from left to right) for the plans in
which the specific flaw is never encountered, the flaw is detected but persists, and the flaw is solved and
hence disappeared. Later sections will in particular examine the modifications along the border-line between
the flawed plans and their un-flawed refinements: These green transitions are obviously induced by plan
modifications that are “appropriate” for the flaw.

The actual reason for a plan not being a solution, that is, the semantics of the plan’s deficient elements in
a flaw f, is only given by the semantics of the flaw generating function and the intended flaw class. We
can, for example, formulate a very general flaw class for expressing “the current plan is not executable”
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F FX

Figure 2.8: Sound flaw detection functions in a refinement space: once flaws that are encountered (red) are
resolved (green) in refinements, they do never re-appear.

and define the referenced components as those tasks, the operations of which are not executable in all
possible plan linearizations (Sec. 2.5). Alternatively, we can build a very fine granular partitioning of defi-
ciencies, for example dealing with rigid and flexible causal structures separately. The following definition
consequently captures the notion of whether such a partitioning covers the solution criteria completely or
not.

Definition 2.29 (Completeness of Detection Function Sets). A given set of detection functions Det is called
complete if and only if the following holds:

∀π ∈ IΠI, ∀P∈P : P is not a solution to π⇒
⋃

f det
x ∈Det

f det
x (P,π) 6= /0

•

Consequently, if a set of sound detection functions is complete, their announcement of flaws becomes equiv-
alent to the currently investigated plan being a solution. When applied to a set of plans, a complete set of
sound detection function apparently provides a consistent and complete family of flaws in accordance with
Def. 2.26. This motivates the following solution criterion for plans that is based on a complete detection
function set.

Theorem 2.5 (Solution Criterion). Let Det = { f det
x1

, . . . , f det
xn } be a complete set of detection functions. For

any plan P and problem π the flaw-based solution criterion satisfies the following equation:

∀π ∈ IΠI, ∀P∈P : P is a solution to π⇔
⋃

1≤i≤n

f det
xi

(P,π) = /0

Proof. The theorem follows directly from definitions 2.29 and 2.26.

Since the detection function set is complete, any plan that is not a solution to the given problem would
induce at least one of the detection functions to issue at least one flaw. It is also worth noting, that a
planning procedure can safely decide to conclude further plan development based on the solution criterion
or not: According to Theorem 2.4, the consecutive application of plan modification steps cannot corrupt the
current solution and re-introduce any flaw.

One particular impact of flaw semantics has to be pointed out: It is an important issue for finding in some
sense “appropriate” plan modifications for the currently investigated plan. Flaw classes, respectively the
plans in the affected sets of the associated detection function, can be interpreted as characterizations of
equivalence classes of plans that are not solutions for specific planning problems for a common reason.
Flaw classes are in this sense conceptualizations of why the plan under examination is not (yet) a solution
and their instances, the flaws, are the vocabulary for representing arguments about that. In fact, it appears
reasonable to use ontologies to represent flaw classes, including subclass relationships and the like. This
topic is also picked up in Sec. 5.1.2.

In the same way that flaws are instantiated via the detection functions, plan modifications are provided by a
respective generating function.
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Definition 2.30 (Modification Generating Function). Given a partial plan P, a flaw f that is associated with
the plan, and a domain model D, a modification generating function is defined as the function

f mod
y : P×F×D → 2My

that computes applicable plan modification individuals of a given type y with My ⊆M. •

We may assume without loss of generality that there is a one-to-one relationship between modification
classes and generating functions. Like we did for the flaw detection functions, we suppose that the generators
are therefore able to produce all modifications of the intended class.

Plan modification classes can be organized in two ways: according to their concrete structure as, for in-
stance, “ordering constraint addition modifications” or according to more abstract descriptions like “nar-
rowing choices in the constraint sets”. But howsoever a modification generating function is defined, it has
to comply with the following soundness criteria.

Definition 2.31 (Soundness of Modification Generating Functions). A modification generating function
f mod
y is called sound if and only if it solely generates proper plan modifications that address the argument

flaw and that have a positive balance with respect to the plan components in the elementary additions and
deletions. More precisely, for all partial plans P and flaws f over a domain model D the following conditions
hold:

1. f mod
y (P,f,D) returns a (possibly empty) set of plan modifications for P.

2. Let m = 〈E⊕,E	〉 ∈ f mod
y (P,f,D) be a plan modification that has been generated in order to address

the flaw f = {e1, . . . ,en}, and let Emod be the set of all components of P that are referenced by E	∪
E⊕ and their respective sub-components. If E f law is the union of f and all of its referenced sub-
components then equation E f law ∩ Emod 6= /0 holds. This means, that the modification references,
directly or indirectly, at least some of the components that are included in the flaw description.

3. Every generated plan modification m = 〈E⊕,E	〉 ∈ f mod
y (P,f,D) adds more plan components than it

removes, that means |E⊕|> |E	|.
•

An example for a sound modification generating function is the function for adding ordering constraints
between task expressions. The function is sound, if it publishes all possible orderings whenever a flaw
is provided that contains a task expression of the current plan. It is however not guaranteed that any of
the modifications will contribute to the problem the flaw represents, because the semantics of the denoted
deficiency is not known to the modification generator. It has to be noted that soundness of a plan modification
is deliberately not defined over input flaws that are provided by sound detection functions. Readers who have
expected statements like “modifications have to solve the input flaw” may be inclined to question this choice
of arguments. The reason for defining the soundness of modification generating function so loosely lies in
the intended system design, the highest priority of which is flexibility: as the later algorithm sections and the
framework incarnations will show, one strength of the approach is that in general, no modification generator
has to anticipate the flaws it receives. Having such a loose coupling between detection and modification
generating functions allows for an independent development of both and guarantees a proper co-operation
in configurations. The issue of finding appropriate candidates amongst the modification generators will be
addressed soon.

Modification generating functions impose a system of equivalence classes on plans, similar to the way flaw
detection functions do. Based on the applicability and obtainability sets of plan modifications, we define the
respective sets for the associated generating functions in a straight-forward manner: the applicability set of
a modification generating function is defined as the union of the applicability sets of all plan modifications
it creates for any flaw structures. In other words, the function’s applicability set is constituted by all plans
for which the function is able to compute a plan modification for a given addressable flaw. Analogously,
the obtainability set of a modification generating function is the union of the obtainability sets of all of its
plan modifications. It is worth mentioning that the applicability and obtainability sets are modulated by the
passed flaw arguments such that they reduce the generators output; there are plans in the applicability set,
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Figure 2.9: The equivalence classes of plans P for a plan modification class My ⊆ M as provided by a
generating function f mod

y and those for one of the generated instances m ∈My.

for instance, that may be solutions for a given problem and therefore there are no flaws to be addressed. The
difference between the applicability set and the effective answer set of a modification generating function is
subject to the following definition of completeness.

Definition 2.32 (Completeness of Modification Generating Functions). Given a partial plan P, let MP
y be the

set of all plan modifications of type y that are applicable in P.

A modification generating function f mod
y is called complete if and only if for any partial plan P in its appli-

cability set and for any flaw f that is detected in P for a given problem π , the set MP
y \ f mod

y (P,f,D) does
not contain any modifications that address f.

A set of modification generating functions Mod is called semi-complete if all of its members are complete.
It is called complete if and only if for any plan P and planning problem π its accumulated output constitutes
a complete family of plan modifications for π (Def. 2.23). •

Completeness of a single modification generating function can be viewed as the property not to cut any
branch in the refinement space prematurely. A generator offers every possible refinement for a flaw. A con-
trasting procedure is discussed for search related topics in Sec. 2.8: In the context of specific information
about the current plan development, the flaws, etc., a generation function may retain un-promising refine-
ment options that are derived from some heuristic considerations in order to improve efficiency. The discus-
sion also covers relevant aspects of complete generator sets and their impact.

Returning to applicability and obtainability examinations, Fig. 2.9 illustrates the relationship between the
equivalence classes of plans that are imposed by a single modification and its related plan modification class:

• Set A is the set of all plans in which a given plan modification m of class My is applicable. This set
may overlap with sets A′ for modifications m′ ∈My with m′ 6= m.

• Set C ⊇ A is the applicability set of My, respectively that of its associated generating function f mod
y .

C may overlap with sets C′ for separate modification classes My′ 6= My.

• B denotes the set of all plans that are the result of applying plan modification m to one of the plans
P∈ A. Since a modification is not applicable in the refinement obtained by its own application, A and
B do not intersect and A∩B = /0 holds. Set B may overlap with analogous sets B′ for modifications
m′ ∈My with m′ 6= m (see Def. 2.22 for a note on commutative modifications).

• D ⊇ B is finally the obtainability set of f mod
y , that means, the set of those plans that are the result

of applying a modification m ∈ My to a plan P ∈ C. This set may overlap with sets D′ for more
modification classes My′ 6= My.

Regarding sets A and B, it has to be re-emphasized that the modifications’ plan transformations are unique for
any two modifications m 6= m′, even for overlapping applicability and obtainability sets.
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Some additional relationships between the plan space compartments have to be mentioned that are repre-
sented in the figure. Trivially, A and B are subsets of C and D, respectively. A is not disjunct from D, because
the plan in which, for example, some modification m is applicable could be generated out of a plan in C by
a modification m′ 6= m from the same class. The analogous argument holds for B not being disjunct from C.
As a consequence, sets C and D overlap. It is however worth noting that any sequence of modifications of
classy will finally leave My’s applicability set if f mod

y is sound, hence C\D 6= /0 and D\C 6= /0. This property
is, analogously to the detection functions, called the monotonicity of modification generating functions and
more formally defined as follows:

Definition 2.33 (Monotonicity of Modification Generating Functions). Let P1 . . .PnPn+1 be a sequence of
partial plans over a domain model D and let f1 . . .fn+1 be a corresponding sequence of flaws such that
Pi is affected by fi for 1 ≤ i ≤ n. Given a set of modification generating functions Mod, let furthermore
m1 . . .mn be a sequence of plan modifications such that mi ∈ f mod

y (Pi,fi,D) for some f mod
y ∈Mod and Pi+1 =

app(mi,Pi).

The set of modification generating functions Mod is called monotonic with respect to plan refinements if
and only if the first plan modification m1 is not applicable in the last plan Pn+1. •

According to the following theorem the above monotonicity property holds for any set of sound generator
functions.

Theorem 2.6 (Monotonicity of Modification Generating Functions). A set of sound modification generating
functions Mod = { f mod

y1
, . . . , f mod

yn } is monotonic with respect to plan refinements.

Proof. Let m1 = 〈E⊕1 ,E	1 〉 be the plan modification that is returned by a sound modification generating
function in Mod that has been applied to a plan P1 and a flaw f1 for a given problem π . In the refinement
plan obtained from this plan, say P2 = app(m1,P1), the modification m1 is not applicable by definition. This
is because all elements in E⊕1 are already present in P2 and none of the removed elements in E	1 can be
removed from P2. Since m1 has been issued by a sound generator and therefore added more elements than it
removed, undoing its induced changes implied that consecutive refinements would have to remove at least
more elements than they have to add. This contradicts however the soundness of the modification generating
functions and therefore no plan modification can be undone. That means, there is no plan in the sequence of
refinements in which m1 becomes applicable again.

The property of monotonicity of plan modification generating functions translates directly to an analogous
characteristic for the plan refinements that are induced by them.

Corollary 2.6.1 (Monotonicity of Modification Generating Functions). A plan refinement space that is
spanned by plan modifications from a set of sound generating functions is acyclic.

Proof. This result follows directly from the previous theorem: Given that a set of sound modification gen-
erating functions is monotonic, a plan cannot be reconstructed by any sequence of plan modifications from
that set such that the very first applied plan modification would become applicable again. This implies
that neither can the original plan as such be restored. The argument holds for all plans on all paths in the
refinement space, which proves the above proposition.

With the previous theorem and corollary it is shown that every sound plan modification generating function
not only has disjoint applicability and obtainability sets, but also that any chain of modification applications
will finally result in a plan from the difference of these sets.

We are now ready to address the initial question of this section, namely: Which conditions qualify a class
of modifications to be “appropriate” for a class of flaws? A reflection upon the possible relationships of
the equivalence classes gives the answer: Regardless of their meaning, a modification can only address
the problem that underlies a flaw12 if it is applicable in the flawed plan, if it affects the plan components
referenced by the flaw, and if the plan that results from applying the modification is not flawed anymore.
12That means, a modification addresses the flaw semantically rather than in the syntax-based notion of Def. 2.31 regarding modification

generator soundness.
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Figure 2.10: Appropriateness of plan modifications: The relation of flawed plans, applicability sets, and
obtainability sets.

Lifting this criterion to the class level leads to the statement that a modification generating function is
appropriate, if it can generate modifications that are applicable in the flawed plan class and that refine these
plans into equivalence classes that are disjoint from the flawed plan class.

But we also have to take into account that the modification generation functions may be specialized to a
point at which an immediate flaw resolution is not possible. That means, that one or more plan modifications
are required to manipulate the flawed plan in such a way that it enters the applicability set of a resolving
modification. Lifted to the class level, the definition can be extended: In addition, a modification generating
function is appropriate for a class of flaws, if it can generate modifications that are applicable in the flawed
plan class and that refine these plans into equivalence classes that have a non-empty intersection with the
applicability set of an appropriate plan modification class. Such indirectly appropriate modifications move
flawed plans into a direction where the defect becomes immediately resolvable.

Fig. 2.10 illustrates the situations of directly and indirectly appropriate modifications: Set A is the set of all
plans that are characterized as being flawed by flaw class Fx ⊆ F. The class of plan modifications My ⊆M
has B as its applicability set and C as its obtainability set, class Mz ⊆M has respective sets D and E. For
the sake of readability, the applicability and obtainability sets do not overlap for the individual classes in the
displayed example and the figure focuses on the necessary relevant intersections. Plan modification class z
is directly appropriate, because it includes instances mz that can be applied to a plan P′ ∈ A∩D such that
app(mz,P′) = P′′ with P′′ ∈ E \A. Regarding plan modification class y, there is no possibility to leave A
directly. However, if there are plans P∈ A∩B for which f mod

y provides modifications my such that for the
refinement app(my,P) ∈C∩D holds, y can be considered to be indirectly appropriate, too. The figure can
be read as follows: The flawed Plan P is first modified by my into a refinement P′ that is still flawed and
afterwards modified by mz into P′′ in which the flaw is finally resolved.

The following function definition gives a more formal representation to the appropriateness-relation between
flaw and plan modification classes. It makes explicit that a member of the former can be resolved in principle
by a member of the latter, thereby enabling us to trigger the generation of specific modifications on the
occurrence of specific flaws.

Definition 2.34 (Modification Triggering Function). Given a class of plan modifications My ⊆M and a
class of flaws Fx ⊆ F, My is called suitable for Fx if and only if for some planning problem π there exists a
partial plan P that is flawed by a f ∈ Fx and which a plan modification m ∈My exists such that P′ = app(m,P)
does not contain f.

Furthermore, given a set of plan modification classes, a class My is suitable for flaw class Fx, if its appli-
cability set has a non-empty intersection with the affected set PFx (Def. 2.27) and if in addition, the set
contains a modification class My′ that is suitable for Fx such that the obtainability set of My has a non-empty
intersection with applicability set of My′ .
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The modification triggering function is the function α : 2F → 2M that relates classes of flaws with their
suitable modification classes, given a set of plan modification classes, respectively a set of corresponding
modification generating functions. •

It has to be emphasized that the triggering function deals with class relationships and does not perform
analysis on the level of individuals. This means, that given a class of flaws Fx and a class of modifications
My with My ⊆ α(Fx), the triggering function does not have the competence or knowledge to anticipate
whether an appropriate concrete modification m ∈My for resolving a concrete flaw f ∈Fx in a given plan and
problem actually exists or not. The reverse implication is however universally applicable: All modification
individuals in My that are not covered by the triggering function are guaranteed not to contribute to a
solution of any individual of Fx for any given plan and problem.

Definition 2.35 (Critical Flaws). A flaw class Fx is called critical if for every plan in its affected set P∈PFx

the intended system behaviour collapses, that means, if beh(P) = /0. Consequently, α(Fx) = /0 in all domain
models, because no refinement will be able to resolve the deficiency that is characterized by Fx. •

An example for a critical flaw class is the problem of inconsistencies in the variable constraints. It is easy
to see that the intended system behaviour any plan P is empty and that no refinement can exist. Such a flaw
class is also referred to as “plan inconsistency”.

The practical impact of the triggering function is an explicit representation of the control flow in a system
that implements the refinement-based planning framework. Such a plan generation procedure basically relies
on the triggering function as the criterion which modification generation function to choose from a given
set in order to process a detected flaw. With the background of the above results it can thereby rely on the
fact that every pursued generation option in the refinement space brings search closer to a point at which the
current plan turns out to be a solution or a fruitless effort.

In the latter situation, the triggering function can be incorporated into a formal rejection criterion for dis-
carding plans that cannot be refined into a solution. If there exists at least one flaw in a given plan for which
either according to the triggering function no suitable modification exists or for which none is issued by a
generator then the currently flawed plan cannot be developed into a solution. It has to be emphasized that it
does not matter whether or not other flaws are present in a plan that can be solved, because flaws do persist
over modifications that do not address them. In this sense, a set of sound detection functions and a set of
sound modification generating functions span a search tree for which the upward solution property holds.
From the point of view of the intended system behaviour, planning deals with refining an abstract solution
into a concrete one. The arguments for deciding on the downward refinement property therefore hold for
our notion of plan refinements [13].

Definition 2.36 (Rejection Criterion). Let Det be a set of sound detection functions and Mod a set of sound
modification generating functions. Let α be a triggering function such that for any f det

x ∈Det all functions
in the set { f mod

y1
, . . . , f mod

yn } ⊆Mod are regarded appropriate, that means My1 ∪ . . .∪Myn = α(Fx). For any
partial plan P and problem π we define the rejection criterion to be⋃

1≤i≤n

f mod
yi

(P, f det
x (P,π),D) = /0 for f det

x (P,π) 6= /0

•

With the functional modularization for the detection of flaws and the generation of appropriate plan modi-
fication steps, with the formulation of an explicit flow control mechanism for relating flaws and plan mod-
ifications, and finally with the definition of precise solution and rejection criteria for the examined plans, a
simple refinement-based planning procedure can be formulated: the simplePlan procedure of Algorithm 2.1.

The algorithm takes as an input the current plan P and a problem specification π . The two sets for flaw
detecting and modification generating functions, Det and Mod, are assumed to be globally accessible from
inside the procedure. For now, Det is furthermore assumed to be a complete set of sound detection functions.
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Algorithm 2.1 A simple generic refinement-based planning algorithm.
Require: Sets of detection functions Det and modification generating functions Mod

1: simplePlan(P,π):
2: F ← /0
3: for all f det

x ∈Det do
4: F ← F ∪ f det

x (P,π)
5: if F = /0 then
6: return P
7: M← /0
8: for all Fx = F ∩Fx do
9: for all f ∈ Fx do

10: for all f mod
y ∈Mod with My ⊆ α(Fx) do

11: M←M∪ f mod
y (P,f,D)

12: if f was un-addressed then
13: return fail
14: return simplePlan(app(choose(M),P),π)

Line 2 initializes the set of all flaws f that are found in P. The first loop (lines 3-4) polls every available de-
tection function and stores the announced deficiencies in the F-set. If the plan is found flawless, that means,
if the solution criterion is met (Def. 2.5), it is returned as a solution (lines 5-6).

The second part of the procedure accumulates the modification steps flaw-wise from the responses of the
available modification generators. It groups the discovered flaws according to their classes (loop in line 8)
and then passes each individual (loop in line 9) to each appropriate plan modification generating function
(lines 10-11). Since the detection functions are assumed to be sound (see Def. 2.28) and complete (see
Def. 2.29), if a single flaw is found un-addressed and the rejection criterion is met (see Def. 2.36), the
algorithm returns a failure (lines 12/13).

When finally all flaws have been answered, one of the generated plan modification steps is non-deterministically
chosen (line 14). This is also the backtracking point of the algorithm. The modification is applied to the
current plan and the algorithm is recursively invoked with the application’s result. The non-deterministic
step is practically realized in the usual way: when a recursive call on a refinement with the chosen modifi-
cation returns a failure, another recursion is performed with a new plan modification; if all alternative plan
modifications in M have been tried out unsuccessfully, a failure is returned from that recursion level back to
a previous choice point.

Algorithm 2.1 obviously performs a depth-first search in the plan refinement space, and therefore the ter-
mination of the procedure becomes an issue. But we have seen in Theorem 2.3 and the related corollary
that the plan space induced by plan refinements from sound generating functions is finite, in particular ev-
ery path in it is cycle-free. If Mod is a set of sound modification generating functions, correctness and
termination of the simplified procedure are consequently guaranteed. Since the algorithm cannot descend
into infinite paths, it performs an exhaustive exploration of the refinement space and hence becomes a com-
plete search procedure. That means, if a flawless refinement of the problem specification – a solution –
exists, the algorithm will eventually find it. Note that the algorithm performs a systematic search over
plan refinements, it does however not perform systematic planning in the strong sense of [177], because
isomorphic or symmetric sequences of plan refinements may yield the same plans (see also discussion in
Sec. 2.8).

It is an important feature of the presented approach that an explicitly stated triggering function allows to
separate the computation of flaws completely from the computation of modifications, and that in turn both
computations can be separated from search-related strategic issues (represented by the non-deterministic
choose operation which path to follow in the refinement space). A planning system that implements this
sketched “architecture” can benefit from this separation in two ways: first of all, function invocation and
interplay, that is, the control flow is specified by α , which enforces a strong modularization of flaw and
modification generators and hence facilitates the realization of configurations and their implementation (see
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Chap. 3 and Sec. 5.1, respectively). The second benefit lies in the availability of all deficiency and mod-
ification options at the time of making a strategic decision and in the analyzability of these options. The
declarative structure of the collected flaws and modifications (sets F and M) allows for an explicit reasoning
step about search (line 14) that can be performed on the basis of flaws and modifications without taking
their actual computation into account. The issue of identifying which corrective measure on the plan can
eliminate which kind of flaws is already settled at that point. Many counter examples exist in the literature
where due to the lack of the discussed features the resulting planning procedures persist in a fixed flaw and
modification selection schema; Sec. 4.1 will discuss this issue and introduce more liberal, so-called flexible
search methods, which can be realized in this framework.

We will see how our approach enables opportunistic search strategy decisions on a plan-for-plan basis.
Naturally, the non-deterministic function choose would serve as the appropriate entry point for a planning
strategy. Since the implied search schema of the generic algorithm is limited to a depth-first procedure,
providing a clever modification choice alone seems however not sufficient. The search strategy will therefore
be divided up into three compartments: one function for the assessment of the possibly many modifications
for dealing with the detected problems in the plan at hand. This option evaluation is performed in a local
view. The second component is responsible for the global view on the refinement space, it is a function for
the selection of the path in the plan-refinement space that is to pursued. The third function finally decides
whether a satisfactory set of solutions has been obtained so far or not.

We begin with the definition of a strategic function that selects all plan modifications that are considered
to be worthwhile options, thereby determining the ordered set of successors for the current plan in the plan
refinement space. The following function controls the branching behaviour of the refinement-based planning
algorithm.

Definition 2.37 (Modification Selection Function). A strategic modification selection function prioritizes
the elements from a sequence of plan modifications. It is described as a function

f modSel : P×2F×2M→ 2M×M

that selects plan modification steps from its third argument and returns them as a partial order on the carrier
set M for their application to the plan in the first argument. Those plan modifications that do not occur in an
element of the result’s relation tuples (even not in an reflexive tuple) are regarded as discarded refinement
options. •

The idea is to interpret the selection result as a preference relation that induces a linear order on the plan
modifications. The necessary linearization will thereby project the modifications that are available in the
current plan onto a sequence of plan modifications that is consistent with the preference relation. The actual
“selection” is performed on that sequence afterwards. If not mentioned otherwise, the result tuples of a mod-
ification selection function contain all plan modifications that have been passed. Later sections will discuss
the influence of this function on the characteristics of the resulting integrated search procedure and how it can
be used to safely skip refinements in a way that does not effect a loss of solutions.

The second aspect of search control concerns the selection of those plans that are next to be processed
by the detection and modification generating functions. In other words, concrete implementations of the
following function are responsible for the general search schema, ranging from un-informed procedures like
depth-first, breadth-first, etc., to informed, heuristic schemata and the like.

Definition 2.38 (Plan Selection Function). A strategic plan selection function prioritizes the elements from
a sequence of plans. It is described as a function

f planSel : P∗→ 2P×P

and it returns the selected plans as a partial order, that means, tuples over the carrier set P . Those partial
plans of the input sequence that do not occur in an element of the result relation (even not in an reflexive
tuple) are thereby discarded. •

Plan selection functions are interpreted as generators for preference relations like the above modifica-
tion selection functions. That means, the selection result will be projected on a sequence of plans that
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is consistent with the preference relation. Again, unless otherwise noted, we assume that the selection
result includes all plans from the input sequence. The realization of a number of exemplary concrete
search schemata is discussed at the end of this chapter and detailed in the subsequent chapter, respec-
tively.

The simplified generic refinement planning algorithm returns the first solution to the given problem that is
encountered during plan space exploration. This is not always desired, for example, in situations where a
solution is sought that satisfies a certain quality measure or where a certain number of alternative solutions
has to be obtained. For these cases, we provide a mechanism for constructing more than one solution,
respectively for indicating when a set of solutions is or contains a satisfactory one.

Definition 2.39 (Solution Selection Function). A strategic solution selection function is a Boolean function
over sequences of plans. It is characterized as follows:

f solSel : P∗→{true, false}
The function returns true, if the sequence of solutions contains solutions of a specific quantity or quality and
false otherwise. •

Two common instances of a solution selection function are, first, the one being satisfied with any solution
(the first identified solution is going to be returned), and second, the greedy one that is never satisfied
(making an algorithm to return all possible solutions for a given problem). Again, the interplay with a
search procedure and the fitting into the bigger picture of an extended refinement planning algorithm will be
discussed later.

The presented interaction of detection and modification generating functions in Algorithm 2.1 assumes that
plan generation only deals with the concept of strategic choice in the planning process: detections report
plan deficiencies, which are expected to demand in the majority of cases for a number of alternative modi-
fications to be prepared for their resolution. But apart from that, also those situations have to be addressed
in which further information can be deduced directly from the current plan alone and its establishing is not
subject to choice and therefore not subject to a search strategy. In the view of plan refinement via plan
modifications, this translates into a need for specific “immediate” modifications in situations where no al-
ternative choices are given. This kind of modification does not need the detection of a respective flaw and
is not to be selected in a strategic decision process. This procedure can also be interpreted as a kind of rule-
based reasoning mechanism, which provides a modular and convenient way of implementing inferences per
se. In particular, the inferred knowledge can be naturally shared by the functions participating in the plan
generation process, because it explicitly manifests in the plan. A rule-based-like modification establish-
ment thus provides much flexibility for the actual implementations of detection and modification generating
function.

Hence, for all inference tasks on the plan that are not subject to choice we define inference rules in the
following way:

Definition 2.40 (Inference Function). An inference function is a function that computes plan modifications
of a given type z that represent necessary changes to a partial plan (under a given domain model):

f in f
z : P×D → 2Mz

The plan modifications are the usual ones as introduced in Def. 2.20. Inference functions may return modi-
fications of shared types with modification generating functions. •

Several of the implementations that will be presented in Chap. 3 confirm the practical impact of this proce-
dure. The delegation of specific reasoning tasks to the inference functions appears to be very convenient for
most configurations that implement our refinement-based approach. Their application ranges from synchro-
nizing constraint sets in advanced planning configurations (Sections 3.3.1 and 3.3.3) to deriving user-specific
information for plan readability (3.5.5) and mixed initiative interfaces (7.2.2). Ambiguous inferences, that
means, inferences that involve points of choice have to be modelled via corresponding, in some sense “ar-
tificially” introduced, pairs of detection and modification generating functions with their specific inference-
related flaws and modifications.
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As inference functions avail themselves of the same repertoire of plan modification steps as the plan modifi-
cation generating functions do, their soundness is defined in a similar way (cf. Def. 2.31).

Definition 2.41 (Soundness of Inference Functions). An inference function f in f
z is called sound if and only

if it generates proper plan modifications that have a positive plan component balance. More precisely, for
any partial plan P over a given domain model D the following holds:

1. The result of calling the inference function f in f
z (P,D) is a (possibly empty) set of proper plan modifi-

cations with respect to P.

2. For every generated plan modification m = 〈E⊕,E	〉 ∈ f in f
z (P,D), more plan components are added

than removed: |E⊕|> |E	|.
•

Soundness is an issue because the inferences are going to be calculated iteratively until their inferential
closure is reached. Note that the result of Theorem 2.6 can be formulated analogously for inference func-
tions. Sound inference functions are consequently monotonic like sound plan modification generators are.
Calculating the inferential closure is therefore guaranteed to terminate. It is also worth pointing out that
establishing soundness is a relatively easy task (see inference functions of respective framework implemen-
tations in Chap. 3).

2.7 A Generic Refinement Planning Algorithm

With the defined strategy functions and inference mechanisms, we can now precisely formulate a more
powerful and adaptable generic planning algorithm. It will be used for the remaining parts of this thesis13 as
the core component of any planning system that is going to be implemented within our architecture. For an
overview, Fig. 2.11 sketches the algorithm: Central to the procedure is the cloud-shaped plan data structure.
In a first phase, inference modules will operate on it to deduce implicit information. After that, detection
functions issue their flaws, which in turn are filtered by the triggering mechanism. At this point, a plan may
be found un-flawed and chosen for a solution. The triggering function otherwise dispatches the flaws to
the suitable modification generating functions that send their plan modification proposals to the respective
strategic selection function. The chosen modifications generate the successors of the current plan in the
search space, and finally the plan selection function updates the system’s focus according to the plan in the
search space fringe that has been chosen to pursue.

Let us now proceed to the concrete algorithmic procedure of the refinement-based planning framework; it is
specified as Algorithm 2.2.

The prerequisites for the execution of the algorithm are defined sets of detection functions, modification
generation functions, and inference functions. In addition, the strategy functions have to be declared. The
procedure itself takes four arguments: the sequence of plans that are subject to examination, the employed
domain model, the current problem specification, and a sequence of plans that have qualified as solutions to
the initial problem so far. When the algorithm is called, it uses the first plan in the list of un-processed plans
as the “current plan”. The literature names this input list alternatively fringe [148], agenda [279], or in more
general search frameworks open node list [223].

The body of the algorithm is basically divided into five sections: A termination or goal test, an infer-
ence loop, a flaw collection loop, the generation of modifications according to the issued flaws, and fi-
nally the strategic choices of which modifications to consider and how to proceed in the search space.
The algorithm uses a function linearize to compute linear sequences of plans, respectively plan modifi-
cations that are consistent with the partial orders obtained from the appropriate strategic selection func-
tions.
13Sec. 5.1 will introduce a slightly enhanced concurrent modification of this algorithm. These enhancements, however, merely address

implementation-specific issues. Conceptually, the planning procedure in the following already exhibits the entire functionality.
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Figure 2.11: A diagrammatic refinement planning process. The intended flow of execution is counter-
clockwise.

Algorithm 2.2 The definitive generic refinement planning algorithm.
Require: Sets of functions Det, Mod, and Inf
Require: Selection functions f modSel , f planSel , and f solSel

1: plan(P1 . . .Pn,π,Ps1 . . .Psm):

2: if n = 0 or f solSel(Ps1 . . .Psm) = true then
3: return Ps1 . . .Psm

4: repeat
5: for all f in f

z ∈ Inf do
6: for all m ∈ f in f

z (P1,D) do
7: P1← app(m,P1)
8: until P1 did not change

9: F ← /0
10: for all f det

x ∈Det do
11: F ← F ∪ f det

x (P1,π)
12: if F = /0 then
13: return plan(linearize( f planSel(P2 . . .Pn)),π,Ps1 . . .PsmP1)

14: M← /0
15: for all Fx = F ∩Fx do
16: for all f ∈ Fx do
17: for all f mod

y ∈Mod with My ⊆ α(Fx) do
18: M←M∪ f mod

y (P1,f,D)
19: if f was un-addressed then
20: return plan(linearize( f planSel(P2 . . .Pn)),π,Ps1 . . .Psm)

21: ExtFringe← /0
22: for all m in linearize( f modSel(P,F,M)) do
23: ExtFringe← ExtFringe◦ app(m,P1)

24: return plan(linearize( f planSel(ExtFringe◦P2 . . .Pn)),π,Ps1 . . .Psm)
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Termination (2-3): If the agenda is found empty, that means, if no more plans in the fringe are due to ex-
amination, or if the solution selection function is satisfied with the solutions found so far, all collected
solutions are returned and the algorithm terminates.

Inference (4-8): The algorithm iterates over all inference functions and applies their modifications to the
current plan P1 until the inferential closure is reached and no more modifications are issued. The
inference modifications are executed immediately and hence bypass the defined strategy functions.

Flaw Detection (9-13): Similar to the simplified Algorithm 2.1, the results of all deployed detection func-
tions Det are collected. If no deficiency can be spotted, the current plan is considered to be a solution
to the given planning problem (see solution criterion in Def. 2.5) and is therefore added to the se-
quence of solutions in the subsequent recursive call of the planning procedure (line 13). Before the
recursive descent, the plan selection function determines the next current plan and modifies the first
argument, the agenda, accordingly.

Modification Generation (14-20): The applicable modification steps are accumulated per flaw class and
per class instance from the set of available modification generators Mod according to the α-defined
assignments. If any flaw is found un-addressed by its associated modification generating functions,
the current plan is discarded and the algorithm is called recursively with a newly selected current plan
candidate (see rejection criterion in Def. 2.36).

Strategy (21-24): All plan modifications that pass the strategic modification selection function (line 22)
are applied to the current plan and thereby constitute the set of its refinements, that is, the set of its
successor plans. This fringe extension is established by the strategic decisions in f modSel and inserted
at the beginning of the fringe. The plan selection function finally chooses the next current plan and
the procedure is called recursively.

The generic refinement planning algorithm is initially called as follows: plan(π.Pinit ,π,ε).

This algorithm obviously subsumes the simplified version Alg. 2.1 because it can reproduce its behaviour
by employing the following concrete function definitions:

• Inf = /0

The simplified version does not feature any inferences.

• The modification selection function f modSel returns for every call a complete linear order of plan mod-
ifications that corresponds to an iterated call to the previously deployed non-deterministic function
choose. Together with the plan selection function, this sequence “anticipates” the decisions of the
simplified algorithm during backtracking.

• f planSel(P1 . . .Pn) = {(Pi,Pi+1)|1≤ i≤ n−1}
Because new nodes in the search space are added to the beginning of the fringe, selecting the first plan
corresponds to a depth-first search schema. The fringe is preserved in order to leave all decisions to
the modification selection function.

• f solSel(P1 . . .Pn) =

{
true for n = 1
false else

Algorithm 2.1 always returns the first solution occuring in the fringe.

It is an essential feature of the presented algorithm that it does not depend on the participating function sets,
since the options to address existing flaws by appropriate plan modifications is defined via the α triggering
function. In addition, Chap. 4 will demonstrate that even the strategy functions themselves can be designed
completely independent from the deployed refinement mechanics. It is also noteworthy that no backtracking
point has to be provided in this algorithm, because alternative unexplored choices are stored in the agenda
for all depth-levels of the search space simultaneously.
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2.8 Discussion and Perspective

2.8.1 General Comments

The syntax and semantics of our formalism have their origins in several strains of planning-related areas
of work, which we would like to give proper credit on this occasion: The non-hierarchical aspects of our
action representation incorporate ideas from the well-founded ADL action formalism [211–213]. Some se-
mantic concepts, in particular the application of the weakest precondition to operator effects, are originated
in deduction-based refinement planning as presented in [247, 248], with additional influence of work in
dynamic predicate logic [128, 250]. The formalization and handling of term updates in the action specifica-
tions is done analogously to the axiom of assignment (D0) of the Hoare calculus [135]. Since it does neither
support hierarchical concepts (any more) nor does it build on a suitable semantics [32, 38, 60, 181], using
the de-facto standard language for the International Planning Competition, the Planning Domain Definition
Language PDDL [80, 99, 111, 187], was not an option (in any of its versions).

For the sake of a uniform presentation, we have decided not to separate the logical language from a dedi-
cated planning language. We point out, that this deviates from our previous work in [26], where language
L had been restricted to the logical symbol set components, while the planning framework employed a
separate planning language that added the syntactical elements for describing plan components, that means,
task and elementary operation symbols. This change has no further consequences on the presented results,
but a reader who is familiar with the respective literature might be slightly confused if unaware of the adap-
tation.

Another more general issue that is worth noting arises in the definition of solutions to planning problems
(Def. 2.17). We have not addressed the question whether or not a solution to a planning problem necessarily
has to be a primitive ground plan. All our definitions and arguments suggest that they have to and that the
executable leaves in a refinement space are populated by them. Regarding the executability of partial plans
in a given state (Def. 2.11), however, we only require all the primitive ground linearizations of plan to be
executable in that state. That means, that our framework is, strictly speaking, able to produce parametrized
plans with abstract actions. In the same way the non-linear planning systems present a partially ordered
plan with the argument that every possible linearization of it achieves the goal, our approach could leave task
parameters unbound if every valuation would result in a consistent course of action. Analogously, if every
implementation of an abstract action “worked”, the solution would be presented in terms of the appropriate
complex tasks. There exists however an implementation aspect that has to be taken into account: computing
any most specific solution is considerably easier than assessing all options with respect to a variable binding,
not to mention an abstract action. We believe that the concept of parametrized abstract plans requires some
more support from the problem specification side (preference of task schema x to stay abstract, preference
of parameters of sort Z instead of concrete instances) before it can be applied in a general planning context.
Furthermore, the connections to the field of learning, for instance building generalized plans [91], have to
be examined carefully.

It has also to be noted that our generic refinement algorithm (Alg. 2.2) resembles generic POCL algorithms
like that in [288]. This particular procedure also uses an explicit strategy-like function for selecting the most
relevant flaw in a plan and on for selecting the next plan to operate on. However, authors like Williamson
and Hanks never make the modification alternatives explicit.

2.8.2 Declarative Semantics and Consistency

Our approach deploys a relatively broad logic-based formal foundation and in particular realizes state ab-
straction by introducing non-logical axioms. The consequently required reasoning mechanisms are in gen-
eral computationally demanding and therefore often avoided in implemented systems. But as pointed out by
several authors ( [180], amongst others), domain models need to have a declarative semantics independent
of domain heuristics or planning algorithm. The reasons for this do not only lie in theoretical properties
like a sound foundation and explicit consistency criteria but they are also a result of experience with fielded
planning systems, for instance, as reported in [194]. Setting up and maintaining consistency in planning
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domain models becomes a serious problem in any mission-critical application and plays a major role not
only for the question whether or not all plans that are generated by the respective system are correct, but
also for cases in which (unexpectedly) no plan can be found [57].

It is clearly a considerable advantage of using declarative models and clear semantics that all these issues can
be addressed adequately. In fact, we have developed a prototypical domain model editing tool that verifies
many of the presented consistency criteria and that is able to notify the modeler about syntactical as well
as semantic errors. In addition, as we have pointed out in various comments in this chapter, we also search
for questionable model anomalies and un-referenced parts of the model (for example, unused sorts and
predicates), and the like. Bringing this tool support to perfection, in terms of both validation functionality
and usability, lies clearly in the focus of future developments (cf. Sec. 7.2.3).

In addition to the efforts concerning the general planning-centered notion of model consistency, future re-
search will have to deal with domain-specific consistency requirements. That means, we want to deduce
or verify statements about the plans that can be constructed on the basis of the examined domain model.
A typical application scenario is to check whether certain security-relevant model invariants hold, for ex-
ample whether safety-constraints are satisfied in all states in all constructable plans. These techniques are
usually found in deductive planning [27], our well-founded approach does however allow for such formal
methods as well. This is a strong contrast to domain model validation via simulating plans [79], and the
like.

2.8.3 Non-Limiting Restrictions

The formal framework complies to some premises that imply limitations at first glance, while on closer
examination they do not.

Firstly, our logical models M are restricted to natural ones, which in particular entails that only a finite
set of objects can be represented. Note that although there is of course a significant difference between
natural and un-restricted, infinite domains, but for practical purposes, we do not depend on them. Any
implementation of our framework that requires an “infinite” number of objects, for example the natural
numbers IN, is physically bound by the computer hardware to get on with a finite number of representable
symbols. The same argument holds for the application domain as well: There is of course an infinite number
of possible values for a point in time, but any model or knowledge base discretizes time into a finite amount
of manageable slices, hour time-slots for example. We may therefore safely provide a pool of constants
that is just “big enough” or generate the finite number of required constants on demand. Note that every
computer uses the latter technique in order to handle real numbers IR.

The second restriction appears to be the fact that our formalism being based on the semantics of operator
sequences. Parallelism as such is not addressed explicitly by our approach. We do however adopt the
notion of non-linear planning, that any un-ordered actions in a solution may be executed in parallel. This is
legitimate because if two actions interfered according to their preconditions and effects, the system would
introduce an ordering between them. Note that this also means that, in compliance with the domain model,
one action does not affect the invariant parts of the other action’s preconditions during the execution. An
extension of our framework in order to represent parallelism explicitly is part of future work. For example,
additional temporal constraints have to be introduced that symbolically demand for an overlapping execution
of two plan steps or that indicate that two steps should never be executed in parallel. We are confident that
only a small amount of selected changes becomes necessary to the semantic foundation. Parallelism can
be represented as an arbitrarily small difference of time that passes between the beginning of two operator
executions. From an observer’s point of view it becomes thereby undecidable which action “happened” first
(pseudo-parallelism). The semantics of an operator’s execution is consequently re-formulated in order to
cover overlapping elementary operations, and with that, the state transition model is complete again and
subsequent result are restored.
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2.8.4 State And Action Abstraction

In contrast to our axiomatic approach, conventional state-abstraction mechanisms generalize by blending
out less relevant esteemed facts in state descriptions [153, 224, 294]. This technique has obviously less
expressive power and the additional drawback that a modeler has to decide (again, without semantic assis-
tance) which subset of the state features is an adequate carrier of all necessary information on the higher
abstraction level. There exists the so-called false proof problem (together with some interesting obser-
vations concerning abstraction in [122]): If an abstract problem space is formed by dropping conditions
from the original space, information is lost and axioms in the abstract space can be applied in situations
in which they cannot be applied in the original space. It is thus difficult to guarantee that if there exists
an abstract solution, there exists also a solution in the base space (cf. downward solution property of HTN
planning [13] and ordered monotonicity [155]). Representing state abstraction by (un-) folding state au-
tomata [46,180] has in general a clearer semantics and a greater expressiveness. Since state automata are an
established modelling technique, there exists some tool support for building hierarchical domain models in
that paradigm [182].

The computational and methodological efforts for building consistent state-abstraction axiom sets are rel-
atively small. Well-formedness of the involved literals and equations can be decided easily, and so can
the correct usage of rigid and flexible literals. During axiom construction, refinements can be restricted to
the proper atoms, respectively terms. It can also be done off-line by unfolding the axioms (substituting all
atoms by their refinements) and checking well-formedness of the explicit refinements. Deciding satisfiabil-
ity is a harder task in the general case, but the structure of the axioms allows for an efficient reasoning about
contradicting refinements.

Sets of state-abstraction axioms can also be seen as stratified axiom sets like in the axiomatic extension of
the Planning Domain Definition Language PDDL, for which [264] has shown that very efficient reasoning
procedures can be provided and that the usage of axioms enhances the expressivity of the formalism and
the efficiency of the planning software likewise (the planning algorithms referenced in [264] do however
not apply abstraction mechanisms). The purpose of an axiomatic extension of PDDL is to provide compact
domain models and describe simple inferential knowledge, the so-called “derived predicates” (cf. “Axioms”
in the original PDDL specification [187] and derived predicates in PDDL 2.2 and higher [80]). Consequently,
the stratified axiom structure is used to compile efficiently modified operator descriptions in which basically
every usage of an atom is recursively substituted by the atoms of associated strata.

The idea of stratification is to recursively “build” derived literals from basic ones, which consequently
requires these axioms to adhere to a specific structure, namely the negation normal form (negation occurs
only in literals), and that predicates occuring in derived literals in a given stratum never occur in lower
strata. The latter allows simple recursion but prevents cyclic definition beyond stratum levels. Such a
structural consistency criterion is not explicitly demanded in our Definition 2.3, since we are only interested
in logical satisfiability of the axiom set. A modeler is however well advised to adopt a “layered” style of
state hierarchies for the sake of conciseness. In the view of our abstraction mechanism, a stratum roughly
corresponds to one “level of abstraction” with respect to the involved state features. According to the
example state-abstraction axiom depicted in Fig. 2.3, literals over Delivered would be in the first stratum,
and literals from the second stratum level would be derived predicates and hence less abstract in our context.
It has to be noted, however, that there does not exist the notion of common abstraction levels or reference
strata, except those state features for which no axioms are provided, the concrete level, and those that do not
occur in any refinement, the abstract level. All features that do not belong to either, however, cannot be said
to be more or less abstract than others.

2.8.5 Refinement-Based Planning and Search

Perceiving plan generation as refining an abstract specification of the desired solution is realized in a number
of planning approaches, however mostly in an informal manner. Exceptions to this trend are deductive plan-
ning approaches and the refinement-planning framework introduced in [147]. The latter, Kambhampati’s
refinement-planning framework, follows the objective to develop a generalization of (all of the) planning
algorithms that have been introduced in the literature. In this view, its primary objective is orthogonal to
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our’s, because the focus of our formal framework lies on generalizing from plan manipulations and there-
fore on generalizing from the actual planning functionality. Kambhampati’s algorithmic frame is intended to
paraphrase key elements that occur in the respective planning algorithms in order to evaluate alternative ap-
proaches and implementations to these elements, for example to solution extraction, to goal selection, and to
consistency checking. The semantics is based on the view that the syntactic structure of a partial plan repre-
sents a set of so-called candidate plans, which are basically executable plans that include the components of
the current partial plan. The notion of refinement is consequently to extend the plan structure systematically
by inserting additional components for the purpose of satisfying goals, protecting established conditions, and
verifying tractability, thereby defining a categorization of the refinements. Although the author addresses
hierarchical refinements as well (also in [149]), the framework does not allow for a seamless integration like
in our hybrid approach, because it does not provide a semantic foundation for action abstraction. To our
knowledge, no integration of scheduling functionality is supported.

Concerning deductive planning, our semantic foundations share some concepts of the formalization pre-
sented in [248]. The main difference lies obviously in the fact that deductive planning uses the formalization
of its refinement semantics for actually making the system operational. While formal methods are far supe-
rior to our framework implementations with respect to verifying consistency and proving propositions about
domain-model specifications (see sections above) and although they enable advanced plan concepts like re-
cursion and other control structures, strategic support and user-comprehensibility are major issues. As we
will show in later chapters, our strategy concept enables a solid variety of effective planning strategies, in
particular those which are capable of controlling search in implementations of our framework that deal with
integrated planning and scheduling functionality. Making the data structures and plan generation choices ex-
plainable to human users is an important topic for future research (cf. Sec. 7.2.2).

The presented refinement-planning algorithm addresses a number of algorithmic issues: correctness, com-
pleteness, systematicity, and termination.

The termination of the algorithm is directly given by the refinement-planning principle. As long as no
solution is found, the flaws trigger the plan modification generators. But this is a terminating process for
two reasons: Due to the fact that once a plan modification succeeds in eliminating a flaw, that particular
flaw will never return on that particular path in the search space (Theorem 2.4), and due to the fact that plan
modifications manifest their monotonicity property (Theorem 2.6 and related corollary), the procedure will
finally yield a partial plan that either satisfies the rejection criterion (Def. 2.36) or that exhibits no flaws and
is considered a solution (Def. 2.5).

It is also easy to see that the planning procedure is correct in the sense that any plan that is claimed to be a
solution is in fact one. Algorithms 2.1 and 2.2 rely in their correctness on the provided detection functions
to be sound (Def. 2.28) – and in turn indirectly on the soundness of modification generating (Def. 2.31)
and inference functions (Def. 2.41). If all sound detection functions remain silent then the current plan
is a solution to the problem (Def. 2.5). Correctness does in particular not depend on any of the strategic
functions, which can in this context be even defined as non-deterministic choices over modification and plan
options.

The completeness of the algorithm has multiple dimensions in the presented framework. It is influenced by
three completeness-aspects, namely

1. Completeness of plan modification families (Def. 2.23): does the spanned refinement space include
all refinements that are solutions?

2. (Semi-) Completeness of modification generating functions (Def. 2.32): does each of the generator
functions always return all possible refinements from the available repertoire?

3. Completeness of search procedure: does the procedure explore all solutions that are offered in the
plan refinement space that is spanned by the plan modifications from the generator functions?

Complete families of plan modifications are typically never provided by the generating functions, for ex-
ample, compare Sec. 1.1.3 for HTN planning as a paradigm in which solutions are seeked under explicitly
defined refinement restrictions (namely refinements that correspond to the specified decomposition meth-
ods). The same holds consequently for complete sets of modification generating functions. Regarding their
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semi-completeness, however, the realizations of the framework presented in later chapters do all recom-
mend to deploy semi-complete generator functions. This is the case, because we want to make all available
options visible to the strategy functions; and in order to conduct research on the plan development in the
different configurations, we are interested in not missing solution development paths inherently. Concerning
the completeness of the search procedure per se, this is (with semi-complete generator functions present)
in general a question of the two strategic selection functions. Since the early days of planning, strategy
functions and their algorithmic equivalents normally do not pursue all of the available refinement options
(partial modification selection) nor do all resulting plans in the fringe ever get considered (heuristic driven
plan selection). Completeness is in general not the primary objective and often sacrificed for the sake of
gaining efficiency by eagerly cutting non-promising nodes in the search space.

The last aspect to be addressed is that of systematicity of search. Though the algorithm is systematic
in the broader sense, that means, in contrast to local search algorithms it traverses the search space in a
structured and organized way, it is however intrinsically susceptible to an un-systematic behaviour in a
stronger notion. As defined in earlier work on partial-order planning systems [177], systematicity describes
a search procedure that never visits the same plan, or even equivalent plans, twice. The therein presented
UCPOP system, for instance, arranges every branch in the search tree such that “it divides the remaining
possibilities of plan refinements into disjoint sets of potential solutions such that all equivalent plans are
down the same branch of the search tree”. The primary motivation for researchers to deal with systematicity
is the, at first glance, self-evident advantage to avoid redundancy in the search space generated by the
planner. Results of later work in the field of refinement planning [147, 148] include some quantification of
the saved computational efforts, for example, that the fringe size of any search tree generated by a systematic
planning procedure (that is, strongly systematic refinement search) is strictly bounded by the size of the
potential solution candidate space.

Systematicity is undeniably a useful property of search, however tied to the refinements rather than the
strategy; particular classes of plan refinements, applied according to a particular schema, can be proven
to provide alternatives to a search strategy that are systematic in the strong sense. Consequently, our plan
modification generating functions would have to be restricted to some less flexible and considerably more
committing refinement generation schema or, alternatively, the strategy functions would have to be burdened
with extremely costly plan space analyses in order to cut-off duplicates of previously encountered plans.
It has however to be noted that systematicity is not considered mandatory for efficient plan generation.
“Clearly, worst case search space size will have a strong correlation with performance only when the planner
is forced to explore a significant portion of its search space in solving the problem. Since the goal of planning
typically is to find one, rather than all, solution of a problem, unless the problem is unsolvable; or the
solution density is low and the planner’s initial choices lead it towards non-solution branches, systematicity
may not necessarily lead to improvements in planning performance” [145]. And as it also has been noted
by Mc Allester and Rosenblitt: “However, it seems likely that Tate’s weaker notion of threat [that does not
maintain systematicity] works just as well, if not better, in practice” [177]. This is related to a known result
in the planning literature [166], and therefore much research has been targeted at finding a reasonable trade-
off between redundancy and commitment. In aiming at providing maximal flexibility to the framework
implementation, we decided to opt for complying with the least commitment principle and tolerating a
reasonable amount of redundancy.

Concerning the concrete search procedure, and this issue will be picked up again in Chap. 4, the strategic
trinity can implement arbitrary search methods ranging from general un-informed schemata like depth-first
search and the like to general informed, heuristic, search algorithms like A∗, etc., to planning specific search
procedures of various breeds. We will demonstrate how even adaptive, evolving, or multiple cooperating
strategies can be realized.

As it has been noted above, when getting closer to an implemented planning system, dealing with the
concepts of null plan and solution plan becomes more convenient rather than working with the formally more
adequate problem specification and solution criteria. The subsequent chapters will successively phase from
the formal framework to a concrete implementation of it, and therefore the signature of the detection function
implementations will loose its second parameter, the problem specification. Secondly, the implementation
chapter will change the modification generating functions’ signatures such that they take sets of flaws (from
the set of all flaws in current plan) instead of single ones. The data structure of modifications will be
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augmented to this end with references to the addressed flaws so the strategies can recognize the associated
pairs.

It goes without saying that these changes do not affect any of the proposed system properties and re-
sults.

One last note on the mutual implications of function granularity and the concept of putting flow control of a
refinement planning algorithm into the trigger function (Def. 2.34): It becomes apparent that there is a clear
correlation between the usefulness of the appropriateness definition and the sensitivity of detection functions
and the specificity of plan modification generating functions. We can say that one detection function is more
sensitive than another, if the cardinality of the respective affected set is smaller. A generator function that
has an applicability set of smaller cardinality can in the same way be called to be more specific than another.
The less sensitive a detection function and the less specific a modification generator is, the less precise we
can decide upon appropriateness. There may be too many modification instances in the class that are located
outside the intersection of the plans flawed and the plans in which the modifications are applicable (cf.
intersection set A∩B in Fig. 2.10), or many of the obtained plans may be in the (now relative large) set of
plans in which the flaw persists.

An implementation of the presented framework is well advised to consider the balance between the speci-
ficity of detection functions and the sensitivity of modification generators. Over-specific and over-sensitive
functions lead to over-populated function sets in which no re-use of functionality occurs. On the other hand,
under-specific and under-sensitive functions cause many false positive appropriateness results.

It is an interesting direction of future research to investigate the conditions, under which in every cycle
of the generic algorithm sets of plan modifications can be executed on a partial plan. We believe that de-
pendency analyses of flaws and corresponding modifications may allow us to identify compatible pairs of
flaws and modifications for which a joint treatment does not cut solutions from the refinement space. Pos-
itive examples are groups of flaws for which only one modification exists (this topic will be addressed in
a subsequent chapter) and that will remain the only options to solve the respective flaws. Such a tech-
nique would, of course, increase the influence of the modification selection function on the overall search
control.

2.9 Summary and Conclusion

This discussion concludes the chapter on the introduction of the formal framework. We have presented the
theoretical foundations for the representation and semantics of world states, which describe the relevant
objects and their relationships, as well as the actions, which induce change by performing transitions on
these world states. We have consequently introduced plans as the means for describing courses of actions
in terms of state transitions and developed the concepts of their consistency and executability, accordingly.
This plan semantics leads to the notion of developing plans by reducing their interpretation spectrum, a
methodology that is commonly called refinement planning. In contrast to existing techniques, our approach
to plan generation is well-founded and includes for the first time a complete and coherent integration of the
notion of abstraction for both world states and actions, thus allowing us to operate on hybrid hierarchical
domain models in a sound and meaningful way. It is worth mentioning that such an integration implies two
important novel aspects with respect to hybrid planning: Firstly, it provides a semantic basis for defining de-
compositions of abstract tasks and thus for safely interleaving hierarchical refinements and non-hierarchical
ones. Secondly, it allows for novel hybrid domain model features, for example, it enables a specification of
complex state abstractions and abstract goal conditions. We will demonstrate implementations of all these
new concepts in the subsequent chapter 3.

Furthermore, we have formally defined what a planning problem and its solution are, and, in accordance to
the refinement planning paradigm, we have shown how the former can be transformed into the latter by so-
called plan refinements. It is a novelty in this paradigm to employ an explicit representation of flaws, which
indicate plan deficiencies, and plan modifications, which represent refinement options in terms of changes to
the plan structure. From these representations we can deduce a so-called triggering function, which relates
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classes of flaws to their resolving modification class candidates. The development of these techniques moti-
vates a generic algorithm for refinement-based planning and scheduling that serves as the methodical basis
for realizing an extremely modular system design. In this architecture, planning and scheduling functionality
emerges from orchestrating the generic algorithm with the individual functional components for identifying
plan deficiencies, for calculating plan-refinement options, and finally for making strategic search-related
choices.

The following chapter 3 makes this framework operational by developing concrete incarnations of the dif-
ferent function sets, thereby providing an a assortment of planning and scheduling system components.
We will see how a meaningful integration of these components can form system configurations for various
purposes. All aspects of search-control are addressed separately in a dedicated strategy chapter (Chap. 4).
In Chap. 5 we will finally demonstrate how the framework can be effectively implemented in a software
artefact.
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3 System Configurations – Instances Of The
Refinement-Planning Framework

THE formal framework that has been presented in the previous chapter provides us with a well-found
theory for building aggregations of functional modules that establish specific planning and schedul-
ing capabilities. On that account, instead of designing, implementing, and eventually validating

the specific software components of a particular planning or scheduling system, we propose a component-
oriented approach that constitutes a generic modelling frame for the description and deployment of what
we call system configurations. The accordingly implemented software artefacts (see Chap. 5) will then
operationalize such configurations by means of orchestrating specific flaw detection and modification gen-
erating functions. If necessary, they are supplemented by inference functions. In order to demonstrate the
full expressive power and adaptability of our framework, we do not restrict our presentation to the intended
final product, an integrated hybrid planning and scheduling system. We rather show how a rich assortment
of planning and scheduling capabilities – traditionally each of them a design and implementation effort in
its own – can be developed in a natural and systematic way as system configurations. These framework
incarnations can also be combined to constitute more advanced, high-level system configurations, which
are usually referred to as “integrated approaches”. The following discourse heads to the tentative climax
of such a configuration evolution, which is, of course, the initially proposed fully integrated hybrid: The
PANDA-System.

Before we are going into the details of some concrete framework realizations, we will address some aspects
about the nature of configurations, their properties, and their interrelations. The following section therefore
provides us with the definitions that are necessary to describe meaningful configurations and to work with
configurations properly. This chapter will then continue with a road-map of the configurations that are ad-
dressed within this thesis and it will try to locate the results in the space of existing approaches and develop-
ments. The position finding will then be detailed by the sections on the concrete configurations and their ca-
pabilities. The chapter concludes with a brief discussion of the presented results.

Since strategy-related reasoning is independent from the refinement generating process, planning strate-
gies are conceptually decoupled from the configurations. In order to adequately appreciate the complexity
and flexibility of our strategic function implementations, their detailed presentation follows in a dedicated
subsequent chapter.

3.1 System Configurations And Their Properties

Previous sections have made use of an informal notion of configurations: up to now, they are basically arbi-
trary collections of flaw detection and modification generating functions, accompanied by inference trans-
formations and strategic search control. The previously presented refinement planning process takes these
collections as an input and processes with them the planning problem input: checking for flaws, proposing
resolving modifications, chosing a modification, and so forth. According to the proceeding chapter’s results,
any collection of these functions will in principle perform some sort of planning in the space of refinements
– given that the functions meet certain soundness criteria. It is however obvious that such a weak notion of
configurations should be reasonably extended to a more formal description of how functional fragments can
or should be compiled in order to put only meaningful and, of course, useful aggregations into operation.
Therefore, we first introduce what exactly is to be understood by the term “configuration” and from that we
examine some properties that system configurations exhibit.
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Definition 3.1 (System Configuration). A system configuration for the generic refinement planning algo-
rithm 2.2 is a quadruple C = 〈Det,Mod,Inf,Str〉 consisting of the following components:

• Det = { f det
x1

, . . . , f det
xm } being a non-empty set of detection functions;

• Mod = { f mod
y1

, . . . , f mod
yn } being a non-empty set of modification generating functions;

• Inf = { f in f
z1 , . . . , f in f

zk } being a set of inference functions; and

• Str = ( f modSel
p , f planSel

q , f solSel
r ) being a triple of strategy functions comprising the modification, plan,

and solution selection functions p, q, and r.

•

It is indeed arguable whether or not to include strategy functions in system configuration definitions. If con-
figurations are merely meant to describe the functional capabilities of the composed planning and scheduling
system, then strategy functions are not necessarily part of them. This is because the sum of functionality
in the detection and modification generating function sets alone determines the explorable plan refinement
space and, consequently, what kind of planning or scheduling problems can be addressed.

On the other hand, and this is the perspective of this thesis, a configuration can be interpreted as the
collection of all the entities that are required for running the generic refinement planning algorithm, and
consequently the strategy functions belong to a (proper) formal system configuration. But since the pre-
vious argument seems better suited for a reasonable configuration classification, the following configura-
tion descriptions are organized according to the planning and scheduling methodology they constitute, and
they will therefore speak of classes of configurations that are identical modulo their respective strategy
triples.

In order to ensure that a system configuration constitutes a proper composition of functional entities, and
hence is finally resulting in a meaningful software artefact for generating plans, the following definitions of-
fer a more formal concept for sound and complete system configurations. Intuitively, the properness of a sys-
tem configuration builds upon the soundness and the completeness of the function sets it is comprised of, and
the provided detection functions have to “match” the modification generating functions.

Definition 3.2 (Properness of System Configurations). A system configuration C = 〈Det,Mod,Inf,Str〉
is called proper if and only if for any domain model D the following conditions hold:

• Det = { f det
x1

, . . . , f det
xm } is a complete set of sound detection functions (see Definitions 2.28 and 2.29).

• Mod = { f mod
y1

, . . . , f mod
yn } is a semi-complete set of sound modification generating functions (Def. 2.31

and 2.32).

• Inf = { f in f
z1 , . . . , f in f

zk } is a set of sound inference functions (Def. 2.41).

• For every class of plan modifications My that is characterized by a modification generator of the con-
figuration, say f mod

y ∈Mod, let Fαy = α−1(My) be those flaws that are in the domain of the triggering
function and hence suitable flaws for the modification class y (see Def. 2.34). Let analogously Fx
denote the class of flaws that is characterized by a respective detection function f det

x ∈Det.

The set of modification generating functions Mod is then said to correspond to the set of detection
functions Det if and only if for all generated modification classes suitable flaw classes are provided
in the configuration. Formally:

∀i,1≤ i≤ n : α
−1(Myi)∩

m⋃
j=1

Fx j 6= /0

•

In order to provide a meaningful configuration, we regard it to be at least an undesired if not improper design
of the configuration provider to include modification generating functions for which no suitable detection
function is deployed that actually triggers them. The inverse situation, that is, providing flaw detections for
which no appropriate resolving modifications are specified, is unproblematic in general. It not only makes
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sense to define cut-off criteria that mark undesirable plan developments, it is furthermore inevitable to en-
counter plans for which no solution refinement exists. For example, there exists no refinement for solving
the deficiency of a plan having an inconsistent variable assignment. But later sections will also present
practically relevant system configurations that are incomplete in the sense that they provide flaw detection
functions that are not covered by matching modification generators although there exist in principle refine-
ments that solve the reported deficiency. In any case we may rest assured: with the results from the previous
chapter, that is, monotonicity, correctness, and completeness of flaws and plan modifications, any proper sys-
tem configuration (in particular independent from the strategy triple) makes the generic refinement-based
planning algorithm a sound plan generation procedure. Although the here discussed kind of completeness
only has a minor practical impact, the following property is nevertheless worth being declared and assessed
for individual configurations.

Definition 3.3 (Modification-Complete System Configurations). A system configuration C = 〈Det,Mod,Inf,Str〉
with function sets Det = { f det

x1
, . . . , f det

xn } and Mod = { f mod
y1

, . . . , f mod
ym } is called modification-complete if and

only if for any domain model and for every detection function f det
xi
∈Det with its associated flaw class Fxi

the following holds:

∀1≤ i≤ n : Either α(Fxi) = /0 (Fxi is critical) or α(Fxi)∩
m⋃

j=1

My j 6= /0

for My j being the modification class that is associated with the modification generating function f mod
y j

in
Mod. •

Please remember the subtle differences between the involved concepts of completeness: A modification-
complete system configuration provides modification generators for all of the deployed detections functions
(at least except those dealing with critical flaws as per Def. 2.35). The generator set is however semi-
complete, that means, the individual generators may not be able to produce every refinement modification
for every flaw instance and therefore the plan generation procedure as a whole may not be complete (cf.
discussion in Sec. 2.8.5).

Compiling a proper system configuration can be achieved in two ways: The first is to assemble those mod-
ification generating functions that describe the desired plan generation methodology and to collect the ap-
propriate solution criteria fragments in terms of the detection functions. The second is to start out from an
existing proper system configuration and to extend that configuration: This section will present a formal
definition for realising extensions.

A straightforward approach for the definition of configuration extensions is to add more functions in the
respective configuration components, which however implied that none of the functions could be simply
substituted in extensions. Substitution is a very convenient way though to adapt (some of) the functions
to slightly extended requirements, for example, in order to cover additional domain model features. The
following definition is therefore founded on the semantics of system configuration components, thereby
providing a more generalized notion of configuration extension.

Definition 3.4 (Extensions of System Configurations). Given two system configurations Ca = 〈Deta,Moda,Infa,Stra〉
and Cb = 〈Detb,Modb,Infb,Strb〉, the second configuration Cb is called an extension of the first configu-
ration Ca if and only if the following conditions hold:

• Let PFx denote the affected set of flaw class Fx (Def. 2.27) and let f det
x be its characterizing detection

function, then ⋃
f det
x ∈Deta

PFx ⊆
⋃

f det
x′ ∈Detb

PFx′

• Let PMy and P ′
My

denote the applicability and obtainability sets of plan modification class My (see

Def. 2.21), and let furthermore f mod
y be the respective characterizing modification generation function,

then ⋃
f mod
y ∈Moda

PMy ⊆
⋃

f mod
y′ ∈Modb

PMy′ and
⋃

f mod
y ∈Moda

P ′
My
⊆

⋃
f mod
y′ ∈Modb

P ′
My′
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• The inference functions in Infa and Infb are analogously compared with respect to their issued mod-
ifications’ applicability and obtainability sets.

It is a synonymic expression to say that configuration Cb subsumes configuration Ca. •

It is easy to see that an extension of a proper configuration in general is not automatically proper by itself
and therefore has to be validated individually, in particular against the correspondence property. It has to be
noted at this point that in practice it is comparably simple to identify the contributing detection functions for
a given modification generator.

The rationale behind the above extension semantics is a notion of conservativeness with respect to the cov-
ered refinement spaces and respective solutions therein – both are induced by the respective configuration’s
function sets. Suppose a system configuration Cb that subsumes a configuration Ca. Since the joint affected
sets in the detection functions of the b-configuration are a super-set of those in a, the extended configuration
incorporates stricter solution criteria than the previous one (more plans are marked to be faulty than before)
and in particular any previously flawed plan stays flawed. In addition, the applicability sets of the modifica-
tions that are provided by the refinement generators and inference functions in b contain all those in a. That
means, the extension preserves, for every plan, all refinements that were applicable in the previous config-
uration. Together with the cross-configuration flaw persistence, this entails that all previously developable
plans in the refinement space stay refineable. Last but not least, all plans in the previous refinement space
that are the product of a refinement operation are present in the subsuming configuration’s refinement space
as well, because the subsuming obtainability sets in b are super-sets of the initial a configuration: formerly
constructable plans stay constructable.

If the extended system configuration was presented the same refinement space root as before, the induced
refinement space consequently “subsumes” in a certain sense that of the previous configuration. Note that
this subsumption does not necessarily mean a complete preservation: It may neither be re-obtained as an
entire subspace nor encountered as scattered in fragments along refinement paths (for instance, interleaved
with the newly introduced modifications). An example for a partial loss of the refinement space is the fol-
lowing: Let configuration Ca provide a modification for a plan P to generate another plan P′. In an extended
system configuration Cb, there are still refinements available for both plans because the applicability sets are
included. But there may also be an inference function in Infb that induces a transformation of plan P directly
into P′′ such that P′ is never subject to any flaw detection and modification generation phase – and conse-
quently none of the previously considered refinements of P′ may ever be constructed. A second situation is
the presence of extended detection modules. They may issue a flaw for plan P that none of the appropriate
modification generators can address. In this case, refinements from configuration Ca for generating P′ may
exist but are never applied when running the b-configuration because any strategy has to discard the plan
before.

With the above considerations, the proposed extension-semantics for system-configurations has two major
practical implications on planning systems that are realized within the presented framework: Firstly, sys-
tem configurations can be extended dynamically. A slim and efficient configuration, for instance, is used
for a couple of plan modification steps in order to explore the refinement space superficially and then the
configuration is extended at run-time in order to complete plan generation. This thesis deals with static
configurations only, but some of the issues will be discussed later in Sec. 3.5. The second effect is that ex-
tensions are not necessarily restricted to the structure of the functional fragmentation of the configurations
they are built from. Thus we are able to merge configurations in a proper way, not only by adding new
functional components, but also by fusioning or redesigning them, and thereby construct really integrated
or hybrid planning functionalities.

Before we are going into the detailed configuration descriptions, let us have a look at an informal “tax-
onomy” for planning and scheduling capabilities, depicted in Fig. 3.1. The diagram shows some partic-
ularly interesting configuration individuals within the huge space of possible system configurations (with
increasing capabilities from the top to the bottom) and how they can be assembled and recombined to con-
stitute new and higher valued planning capabilities. Every system configuration is represented by a box
that consists of four compartments: the kinds of plan components that are involved or introduced, the de-
ployed flaw detection functions, the used modification generation functions, and the included inference
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Figure 3.1: A taxonomy of the planning and scheduling system configurations presented in this chapter. It
shows the involved plan components and participating configuration constituents. Details on the
composition of extensions are given in the respective sections 3.2.1 to 3.4.
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functions. The arrows denote the “extension” relationship between two configurations, that means, a config-
uration at the starting end of an arrow subsumes all functionalities of the respective predecessor it is pointing
at.

The taxonomy’s classification reflects a perspective based on the capabilities that are provided by the dif-
ferent system configurations, but there is also an alternative interpretation of this systematization: Let us
assume that each system configuration is associated with the set of all the possible problem specifications
over all possible planning domains for which a complete planning strategy triple is able to find all offered1

solutions. Such problem sets are uniquely identified by the respective refinement space that is induced by
the detection and modification generating functions in the system configuration (see also Def. 2.22). Let
furthermore IΠIa denote all problems that are decidable in the previous sense for a system configuration
Ca and let IΠIb be the corresponding set for a configuration Cb that is an extension of a. Given the above
definition of extensions, it follows directly that the more advanced configurations are always able to solve
all the problems of their ancestor configurations, while the opposite is not true. From this result we can
infer that necessarily IΠIa ⊆ IΠIb. A further formal treatment of the relationship between configurations and
their associated problem sets is beyond of the scope of this thesis, but it is an intuitive consequence that the
subsumption property can be translated from the configuration view into that of associated problems and
solutions: the problems in set a may therefore appear as so-called “sub-problems” in (all of) the instances of
set b and accordingly the solutions for these sub-problems can be utilized in finding solutions or identifying
non-solutions, respectively.

We will begin this survey at the taxonomy’s root, a configuration that performs a primitive form of planning,
namely Task Assignment Planning. As we will see, this kind of planning provides the common basis for
reasoning about task instances, ordering relations and parameter assignments. Partial-Order Causal-Link
Planning (POCL), Hierarchical Task Network Planning (HTN), Resource Planning, and Temporal Planning
are specialisations that conceptually cover the majority of representatives of the approaches discussed in
Chap. 1. These differentiations are merged into higher level configurations Hybrid Planning and Scheduling.
They combine the strengths of task and state abstraction mechanisms, respectively integrate reasoning about
temporal phenomena and resource consumption. We finally present the overall peak of our integration
efforts, the PANDA system.

Since our formal approach guarantees the independence of any plan generation reasoning in terms of flaws
and modifications from the actual search strategy, all of the mentioned sections only deal with the plan defect
detectors and plan space generators for the respective planning methodology. All strategy issues are conse-
quently addressed outside the configuration descriptions, and are presented separately in a dedicated strategy
chapter 4, which also deals with the possible interactions between the choice of strategy and the configura-
tion components that constitute the planning functionality. The introduction of concrete planning strategies
will not only show translations of some of literature’s most prominent search schema proposals, but it will
primarily expound our own developments: Novel planning strategies that (a) have been stimulated by the
possibilities that are given by our formal framework’s explicit representation of plan deficiencies and solu-
tion options and that (b) opportunistically navigate through the refinement space and are hence called flexible
strategies. A representative cross-section will be evaluated later in Chap. 6.

Fig. 3.2 tries to capture the flexibility of such an assembling of planning technology. The main config-
urations from the above classification taxonomy are depicted as white areas in a two dimensional space:
one dimension represents the plan generation principles of building plans from first principles by a causal
analysis and of refining abstract plan specifications into concrete courses of action. The second dimen-
sion addresses using a purely symbolic representation in contrast to working on (more or less continuous)
numeric representations when dealing with resources.

The “classic” configurations are cornerstones of that plane, while the integrated approaches bridge the rep-
resentational and methodological gaps between them. Resource Planning, for instance, extends the purely
symbolic plan synthesis technique of POCL planning by reasoning about resource consumption and a richer
time model. In doing so, it meets Scheduling, which in turn does not reason about the causal interactions of
the involved activities but is able to assign time slots and resources to them. The integrated PANDA approach
finally covers all areas.

1That means, the strategy discovers all solutions in the induced refinement space.
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Figure 3.2: Flexibility of the PANDA modularization concept: the plane of possible system configurations
that is spanned along the dimensions of “hierarchization” of domain concepts and the granu-
larity of involved objects (from purely symbolic representations to nearly-continuous numerical
quantities).

Fig. 3.2 might suggest that the chosen configuration individuals represent a complete coverage of the frame-
work’s options. It has however to be noted that the configuration space is in fact much more populated than
it appears to be and allows for more discriminable values along its axes. We refer to the respective sections
but the reader may imagine a symbolic plan synthesizing configuration to which only a few resource rea-
soning capabilities are added, say, reasoning about symbolic resources. The resulting individual would have
to be placed between POCL and Resource Planning. In addition, we can think of more advanced extensions
that add further dimensions to the configuration space. For example, Sections 7.2.1 and 7.2.2 will give a
perspective on future work that covers the ability of reasoning about uncertainty or the involvement of the
human users’ problem solving competence (also known as interactive or mixed initiative planning). Against
that background, it has to be emphasized once more that the formal framework allows for search strategies
which are completely separated from the actual plan generation methodology. It is an essential achievement
in this context, since there are numerous strategies developed for the basic planning techniques, that is to
say, the corner-stones of the configuration plane, but definitely not for the majority of the integrating hybrid
approaches.

The following sections will detail the representation of the concrete system configurations from the dis-
cussed taxonomy of Fig. 3.1 in our proposed formal framework. We will give a motivation and application
examples for each of them in order to show their potential and limitations. Each presentation includes the
constituting configuration components, that means, the flaw detection, modification generating, and infer-
ence functions, together with the corresponding triggering function definitions. Every system configuration
therefore constitutes a self-contained, fully functional planning system when plugged into the generic algo-
rithm (Alg. 2.2 on page 70), modulo the strategic function triple. The forthcoming presentation will pursue
the following road-map for introducing the discussed system incarnations:

1. Task Assignment Planning (Sec. 3.2.1): As it has been noted before, this configuration provides basic
representations and capabilities for dealing with actions and their parameters.

2. Partial Order Causal Link Planning (POCL, Sec. 3.2.2): The first extension of the task assignment
planning configuration adds the treatment of causal dependencies in a plan.

3. Hierarchical Task Network Planning (HTN, Sec. 3.2.3): Planning by finding consistent implementa-
tions for abstract actions. This extension adds procedural knowledge about actions to the task assign-
ment configuration.

4. Hybrid Planning (Sec. 3.3.1): We extend POCL and HTN planning by merging the two configurations
into the first integrated approach. Hybrid planning considers the causal interactions and dependencies
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of abstract and concrete actions likewise, and it is in addition capable to simultaneously implement
abstract actions by predefined partial plans. This configuration will demonstrate how a merge of
configurations can be realized for highly interdependent function sets.

5. Resource Planning (Sec. 3.3.3): The reasoning about plans that deal with resource consumption is
based on task assignment planning. We introduce a non-intrusive representation for symbolic re-
sources that are allocated for certain tasks as well as for numerical resources that can be consumed
and produced in defined quantities by plan activities.

6. Temporal Planning (Sec. 3.3.2): Based on task assignment planning, the temporal planning configu-
ration introduces a much richer temporal representation for the actions. Like for resource planning,
additional “meta-constraints” transparently define time windows and execution durations for tasks.

7. Scheduling (Sec. 3.3.4): The second hybrid approach, a merge between the temporal reasoning and
the resource-aware planning methods. This configuration illustrates in particular how to integrate
entirely different planning capabilities in a transparent way.

8. Integrated Hybrid Planning and Scheduling (PANDA, Sec. 3.4): Scheduling is combined with the state
and task abstraction mechanisms of hybrid planning. This configuration is able to deal with causal
dependencies and resource interactions simultaneously, even across multiple levels of abstraction.

The chapter concludes with a brief discussion of the presented material.

The following sections will make use of various application domains in order to display the specific tech-
niques the respective system configuration brings to the table. Please note that all scenario’s domain model
fragments are only intended for demonstration purposes and do not constitute a completely worked out,
integrated model across the following sections. The accentuated alternative modelling principles may rather
imply inconsistencies between the the respective fragments.

3.2 Basic System Configurations

3.2.1 Task Assignment Planning – CTAP

Task Assignment (TAP) Planning will serve as a basic system configuration CTAP and the root anchor of the
configuration taxonomy (Fig. 3.1). It is a very rudimentary form of planning that reflects what is typically
done on a piece of paper during during manual project management, personal organization, etc. The spec-
ification of a TAP plan resembles specifying a flow-chart: We basically write down what tasks have to be
done and arrange them chronologically. For each task we note who the responsible person is, which part
of the equipment is used, and the like. In cases where the additional information is not definite or known,
we may use place-holders and start to co-designate them, for instance, two tasks have to be carried out by
the same person. Fig. 3.3 shows such a TAP plan, not on a piece of paper, but modelled in a commercially
available project planning tool. Although such tools do neither support the definition of something equiv-
alent to variable constraints nor to task parameters, the basic notion of a task is comparable. While TAP
planning understands tasks (or equivalently: jobs, activities) as actions that are to be performed in the real
world and as processes the execution of which takes time, the actual evolution of the execution environ-
ment is not explicitly captured by TAP’s representation. In the pen-and-paper approach, the modeler has to
keep in mind all task dependencies and to consider them when formulating parameter constraints and job
orderings. Causality reasoning is done on a “best-practice” basis or supported by suitable, tried and tested,
predefined templates (sub-plans). Finally, the overall objective is un-represented as well and only known
to the human user who sets up the plan. In the TAP perspective, any given TAP plan is the objective by
itself and is regarded to be executable if the choice of parameter assignments is consistent with the specified
constraints. It is worth noting that executability exclusively relies on the modeler’s competence to consider
all task interactions during the modelling process.
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Figure 3.3: An example scenario for Task Assignment Planning, represented in commercially available
project planning software. The screenshot is taken from OmniPlan, c©2006 The Omni Group.
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Figure 3.4: An initial plan of a task assignment planning problem in the disaster relief mission domain.

Domain Model Specifics

In terms of the refinement planning framework, a TAP planning system configuration works on a reduced
domain model representation and is responsible for maintaining consistency on the task orderings and the
variable constraints. The formal definition of a TAP domain model is given by the triple DTAP = 〈M , /0,T〉,
that means, no state-abstraction axioms are provided. All task schemata in T are primitive and do not carry
preconditions or effects, since causality is not involved when deciding about executability. TAP operator
schemata are therefore structures like o(v) = 〈>,ε〉, so that their instances will be executable in any state
(see primitive task schema Def. 2.4). A TAP plan is consequently a reduced representation of a partial plan
(Def. 2.9) and basically consists of a partially ordered set of parametrized tasks: P = 〈TE,≺,VC〉. It makes
no sense to provide causal links, because no causality is to be documented.

Problems and Solutions

A TAP problem specification is given by the tuple πTAP = 〈DTAP,sε ,>,Pinit〉, that means it is an ordinary
planning problem with the empty initial state2 and a trivial goal state specification. The initial plan Pinit is
thereby restricted to a TAP plan.

Fig. 3.4 shows an example task assignment planning problem in the context of the disaster relief mission
scenario. The initial plan contains two parallel3 threads of activities: one in which a unit of the relief organi-

2In state sε every flexible relation is interpreted as the empty set and every flexible term as undefined (Def. 2.18).
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Install Illumination
u3: THW-Unit
l3: Location

Provide Electricity
u2: THW-Unit
l2: Location

Mobilize Unit
u1: THW-Unit

Mobilize Unit
u4: THW-Unit

Pick-up Sandbags
u5: THW-Unit
l5: Location

Distribute Sandbags
u6: THW-Unit
l6: Location

VC = { u1 =̇u2,u2 =̇u3,u3 ∈̇Taskforce Electricity (FGr E),u1 ˙"=u4,u4 =̇u5,

u5 ∈̇Truck,u5 =̇u6, l2 =̇Dyke Segment 5, l2 =̇ l3, l3 =̇ l5, l5 =̇ l6,

u1 =̇FGr E Neuwied,u4 =̇9t Truck, FGr BrB, 2.TZ Dresden}

Figure 3.5: A solution to the task assignment planning problem of Fig. 3.4.

sation is mobilized and finally sets up an electric lighting in order to support a nightly dyke fortification. The
second thread deals with a second unit that transports sandbags to an endangered location and distributes
them. The given constraints on the tasks parameters specify that the two threads involve two different units
by the non-codesignation u1 ˙6=u4. In order to ensure that each thread consistently uses the same unit during
the mission, the co-designation constraints induce that u1 = u2 = u3 and u4 = u5 = u6. Furthermore, the
TAP plan use co-typings for restricting the assigned units to the sorts that seem to be appropriate for the given
task: The activity “provide electricity” has to be carried out by a special task force of the relief organization
that is equipped with high-power generator technology, the so-called Fachgruppe Elektroversorgung (power
supply task force), and that is denoted by by the co-typing constraint u3 ∈̇FGrE.

Given the TAP problem definition, a solution can be characterized by a TAP plan that has consistent ordering
constraints and a set of variable constraints that are globally consistent. In addition, we require that every
variable is assigned to a rigid constant value (see Sec. 2.8.1 for a discussion of parametrized plans). The
remaining solution criteria of the framework’s general Definition 2.17 are trivially true, due to the extremely
reduced executability concept.

A solution to the example task assignment problem is depicted in Fig. 3.5. The “open” variable assignments
from the problem specification, namely the identity of the involved relief organisation units, are solved by
additional variable co-designations. In this example, a heavy truck of a group in the city of Dresden is
used for the transport, and illumination is provided by a special craft of the Neuwied group. Supplementary
ordering constraints between the activities linearize the plan steps such that the result represents a sequence
of actions.

Detection Functions – DetTAP

The set of flaw detection functions for task assignment planning covers three flaw classes: ordering relation
inconsistencies, variable constraint inconsistencies, and unbound variables. The three associated detection
functions are defined as follows:

Definition 3.5 (Ordering Inconsistency). For a given task assignment plan P = 〈TE,≺,VC〉 and TAP plan-
ning problem-specification π , the function f det

OrdIncons for detecting flaws that represent an inconsistency of
P’s ordering constraint set is defined as: {te1, . . . , ten} ∈ f det

OrdIncons(P,π) if and only if for 1≤ i≤ n: tei ∈ TE
and tei ≺∗ tei. That means, the flawed elements are all plan steps, that are on a cyclic path in the transitive
closure ≺∗ of P’s partial order. •
Definition 3.6 (Variable Constraint Inconsistency). Given a task assignment plan P= 〈TE,≺,VC〉 and prob-
lem specification π , the function f det

VarIncons for detecting flaws that represent an inconsistency of P’s vari-
able constraint set is defined as: {v1, . . . ,vn} ∈ f det

VarIncons(P,π) with vi ∈ V (for 1 ≤ i ≤ n) if and only if

3See discussion on parallelism in Sec. 2.8.3.
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VC |= vi 6= vi holds. That means, the flawed variables are those for which the inferential closure of the
inconsistent variable constraint set infers that they are unequal to themselves. •

The detection functions are provably sound, because if the ground linearizations exist, this means in partic-
ular that the constraint sets are consistent and no flaw is issued. Note that both flaw classes FOrdIncons and
FVarIncons are critical flaws in compliance with Def. 2.35.

As it has been stated above, it is one problem during task assignment to find appropriate values or assign-
ments to all unbound task parameters. While a variable is not yet definitely assigned a constant value,
that means, while more than one single variable assignment is consistent with the variable constraints, the
following detection function issues its flaws.

Definition 3.7 (Open Variable Binding). For a given task assignment plan P = 〈TE,≺,VC〉 and TAP-
planning problem π , the flaw detection function f det

OpenVarBind signals the occurrence of variables in P that
have not yet been assigned to a constant by VC. It is defined as follows: {v} ∈ f det

OpenVarBind(P,π) with v ∈V
being a variable occurring in P, if and only if there exist constants c1,c2 ∈C with c1 6= c2 and VC |= v = c1
as well as VC |= v = c2. •

Note that this definition is not restricted to task parameters but also to variables solely occurring in VC. Since
this detection function directly incorporates a solution criterion of task assignment planning, it is trivially
sound.

If the application relies on linear plans only, the following detection function that informs about partially
un-ordered plan steps is optionally deployed.

Definition 3.8 (Unordered Task). For a given task assignment plan P = 〈TE,≺,VC〉 and TAP problem
specification π , the flaw detection function f det

UnordTask returns all pairs of plan steps in TE that are not
temporally related by the transitive closure of ≺: {tei, te j} ∈ f det

UnordTask(P,π) if and only if tei, te j ∈ TE and
neither tei ≺∗ te j nor te j ≺∗ tei. •

Depending on the chosen TAP-variant, this detection function is sound.

Now that we have defined the plan deficiencies it is time to introduce the plan modification generators.

Modification Generating Functions – ModTAP

The available refinement generators for the task assignment planning configuration manipulate the ordering
and variable constraints in a straightforward way.

Definition 3.9 (Add Ordering Constraint). For a given task assignment plan P= 〈TE,≺,VC〉, domain model
D, and flaw f, the modification generating function f mod

AddOrdConstr proposes to include an appropriate ordering
constraint. 〈{tei ≺ te j}, /0〉 ∈ f mod

AddOrdConstr(P,f,D) for {tei, te j} ⊆ TE∩comp(f) and tei ≺ te j, te j ≺ tei 6∈≺.
•

In order to address the flaw argument properly, the above definition introduces a function comp, which
returns all components and sub-components of a set of plan components (see Sec. 2.6.2). Including it in the
detection function’s definition enables it to extract indirectly flawed task expressions, for instance, that are
referenced by a passed ordering constraint.

Definition 3.10 (Add Variable Constraint). For a given task assignment plan P= 〈TE,≺,VC〉, domain model
D, and flaw f, the modification generating function f mod

AddVarConstr suggests to include appropriate variable
constraints. Let τ be a term over D’s language L and Z a sort symbol in the respective set of sort symbols
Z :

1. 〈{v=̇τ}, /0〉 ∈ f mod
AddVarConstr(P,f,D) for v ∈ V ∩ comp(f) and v=̇τ,v ˙6=τ 6∈VC

2. 〈{v ˙6=τ}, /0〉 ∈ f mod
AddVarConstr(P,f,D) for v ∈ V ∩ comp(f) and v ˙6=τ,v=̇τ 6∈VC
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3. 〈{v ∈̇Z}, /0〉 ∈ f mod
AddVarConstr(P,f,D) for v ∈ V ∩ comp(f) and v ∈̇Z,v ˙6∈Z 6∈VC

4. 〈{v ˙6∈Z}, /0〉 ∈ f mod
AddVarConstr(P,f,D) for v ∈ V ∩ comp(f) and v ˙6∈Z,v ∈̇Z 6∈VC

•

The produced plan modifications drop some trivial inconsistent proposals. A deeper analysis of the variable
constraints is of course possible. For the sake of simplicity, we however decided to keep every function
design as simple as possible and to put a special emphasis on distributing the competences properly. That
means, we tolerate that f mod

AddVarConstr may issue some useless refinements because the “specialist function”
f det
VarIncons will be able to detect any unwanted consequence immediately. Pursuing this principle allows us

to concentrate on the specific functionalities without replicating reasoning processes throughout the system
configuration.

Both modification generating functions are sound: Since their produced plan modifications exclusively add
constraints to the respective sets, both induce a proper plan refinement (although the reduced domain model
does not allow for a monotonic restriction of the intended system behavior) and both have a positive balance
of elementary additions. They also meet the final soundness requirement as both provide only constraints
that include the flawed elements due to the use of the comp function.

Triggering Function αTAP

The triggering function for task assignment planning is relatively simple, since the changes that are induced
by the respective modification generating functions directly address the flawed elements of the detection
functions. We therefore define the TAP triggering function as follows:

αTAP(Fx) =


MAddVarConstr for x = OpenVarBind
MAddOrdConstr for x = UnordTask
/0 otherwise

Inference Functions – InfTAP

The task assignment planning configuration does not need deductive support. However, it is convenient for
an implementation to have an inference function at disposal that facilitate variable constraint inferences by
making the transitive closure of VC explicit. This reduces implementation work and computational effort
considerably. Since it is optional and does not contribute to the solution generation process in particular, we
do not list it in the current configurations. It is nonetheless a sound inference function, because it returns
proper plan modifications with a positive balance of elementary additions.

Summary of the TAP Configuration

With the above function set definitions we get for the TAP configuration

CTAP = 〈{ f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask},
{ f mod

AddOrdConstr, f mod
AddVarConstr},

/0,Str〉

Theorem 3.1 (Properness of CTAP). CTAP is a proper system configuration in the sense of Def. 3.2.

Proof. It is easy to see that DetTAP is a complete set of sound detection functions. If a plan is no solution,
according to the reduced representation of TAP, this means that no primitive ground linearization exists.
This in turn implies that either the variable or the ordering constraint set (or both) is inconsistent, which
is announced by the respective detection functions, and the function set is therefore complete. Since in
addition, it has been shown above that the individual detection functions are sound, the assumption holds.
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Note that TAP employs one additional solution criterion, namely definite variable assignments, and one
optional (sequential plans).
ModTAP is a semi-complete set of sound modification generating functions, firstly because no modification
generator passes over a flaw. Note that if a flaw is not answered (for example, not adding an existing ordering
constraint) this happens only because no properly built refinement can be constructed (existing components
must not be added). Secondly, all of them are proven to be sound.
InfTAP is trivially a set of sound inference functions, because it is an empty set.
ModTAP corresponds to DetTAP, because every generated modification class is provided with a suitable flaw
class.

Theorem 3.2 (CTAP is Modification-Complete). CTAP is modification-complete according to Def. 3.3.

Proof. For the non-critical flaw classes FOpenVarBind and FUnordTask, the configuration provides the modifi-
cation classes MAddVarConstr and MAddOrdConstr, respectively.

3.2.2 Partial Order Causal Link Planning – CPOCLP

With Partial Order Causal Link Planning, accomplished by the system configuration CPOCLP, we present
the first extension to the simple Task Assignment Planning configuration that addresses “real” planning
problems. As described in the introductory section 1.1.2, reasoning about preconditions and effects of
actions is central to POCL planning. Actions are put in a plan for a specific reason, namely to ensure the
establishment of a state that satisfies a goal specification. The actions’ preconditions themselves are regarded
as new goals that may require further actions, and so on. Apart from constructing a causal chain, it has to
be guaranteed that all established causal connections are safe from interferences with (side-) effects of other
actions. To this end, the causal structure of a plan is made explicit by so-called causal links that are used
as book-keeping entities for documenting the commitment to a specific causal interaction. In adopting this
concept, verifying the executability of a plan becomes reasoning about completeness and threat-situations
of the causal linking.

Fig. 3.6 displays a POCLP-plan as it is shown in an interactive planning tool for our system. The scenario is
taken from our adaptation of the IPC satellite domain (see Sec. 5.2.1): A satellite instrument is first switched
on, calibrated on a specific calibration target, the satellite then turns into the scientific target direction, and
finally the instrument takes an image of the phenomenon of interest. The icons represent the plan steps and
the black arrows the ordering relation on them. The red arrows denote causal links, but since the annotated
conditions obstruct readability these are only visible when the user marks the link with the mouse. In
the example, the switch-on operator provides energy to the scientific instrument, which enables taking a
thermogram, and so on. The variable constraint set of the plan is textually represented at the bottom of the
screen; the currently displayed portion contains exclusively co-designations. During plan generation, the
graph structure is animated in order to be able to replay the complete refinement process and to comprehend
the development of the plan.

Domain Model Specifics

The POCLP representation of tasks corresponds to that of operator schemata (Def. 2.4). As it is common
in the POCL-community to use PDDL syntax and for the sake of a more uniform presentation, our pictorial
examples sometimes deviate slightly from the framework’s notation and employ the representation of effects
as a conjunction of positive and negative literals4. It thereby corresponds to actions with the unconditional
effects in PDDL [187] and its potential successor OPT [189]. We do not make assumptions about the usage of
terms, rigid or flexible, however note that the commonly realized POCL-systems deal with literals in which
only variables or rigid constant terms occur. The translation of this simple structure into our formalism is
trivial: an action effect ϕ1∧ . . .∧ϕn corresponds to the elementary operation sequence e1 . . .en, where ei is

4Although this representation is technically equivalent to the even more common add and delete lists as introduced by STRIPS [92,
169], we regard this set-based style of modelling unappropriate for our framework.
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Figure 3.6: An example plan used in CPOCLP (screenshot taken from an interactive prototype of our system).
The upper panel displays temporal (black arrows) and causal dependencies (red arrows) between
plan steps (pictograms). The part below shows a textual representation of variable constraints.

an operation over the respective relation symbol of ϕi, 1≤ i≤ n. If ϕi = R(τ) is a positive literal, then ei is
the elementary operation +R(τ) and −R(τ) otherwise.

The action depicted in Fig. 3.7 shows the operator for turning the operation platform in the satellite do-
main from a (symbolic) direction into another one as it is presented in our domain editing software. The
precondition is the positive literal for describing the satellite’s orientation before the operation, the effects
section is the conjunction that specifies a state update such that the previous orientation is changed into the
new orientation. Note the use of order-sorted variables and appropriately declared relation symbols (not
explicitly visible in the figure, however implemented as background consistency checks in the editor, see
also Sec. 7.2.3).

Since CPOCLP only deals with primitive tasks, it does not use state abstraction axioms and a domain model
for partial-order causal-link planning is therefore given by DPOCLP = 〈M , /0,T〉. The above described oper-
ators are specified in the set of task schemata T and the logical model M is given as defined on page 32.
Consistency of POCLP domain models can be directly reduced to consistency of the general domain model
as given in Definition 2.8.

A plan is exactly the partial-plan structure of Def. 2.9, that means P = 〈TE,≺,VC,CL〉. Please note one
subtlety regarding the interpretation of causal links: while it is common to the POCL literature to define
causal links as annotated ordering constraints, we regard them as structures that imply an ordering constraint
if the linked task expressions are primitive ones. We believe that this view is also the intention of McAllester
and Rosenblitt, who define corresponding ordering constraints as a requirement for causal links and not as
being subsumed by them [177].
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Figure 3.7: A POCL action specification (screenshot taken from our prototypical domain model editor).

Problems and Solutions

A problem specification for POCLP is defined via an initial state and a goal state specification: πPOCLP =
〈DPOCLP,sinit ,sgoal ,〈 /0, /0, /0, /0〉〉. As it is common in POCL planning, we will transform this problem de-
scription into the null plan representation (Def. 2.18), which encodes the initial and goal states as ar-
tificial actions in the plan. This enables us to apply causal links from the initial state and to the goal
state.

We consequently search for a solution plan (Def. 2.19), which reduces the general solution criteria to a single
executability principle. As it has been pointed out in the introductory sections, partial order planning uses
causal links for an efficient tractability analysis5 and regards causal link threats as refutation arguments [54].
That means, the solution criteria for a plan are translated into the causality-aware detection functions of the
following section.

Detection Functions – DetPOCLP

Regarding the basic consistency criteria, this configuration relies on the previous results for task assign-
ment planning. It therefore employs all detection functions of DetTAP. In addition, the flaw classes of the
following two detection function definitions are supported.

The idea of causal links is to document which effects of which producer task are intended to establish the
necessary features of a state in order to make a consumer task applicable. If there is no recognizable commit-
ment that completely satisfies the consumer’s requirements, this situation is called an “open precondition”
of the consumer.

5Kambhampati discusses in [147] causal links in particular and tractability analysis in general, some of the relevant issues are also
covered by formal efficiency analyses conducted in [16]. The implicitly underlying modal truth criterion as it has been formulated
by Chapman [54] is surveyed with respect to its usability and practicability in [150].
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Definition 3.11 (Open Precondition). Given a partial plan P = 〈TE,≺,VC,CL〉 and planning problem π =
〈D,sinit ,sgoal ,Pinit〉, the flaw detection function f det

OpenPrec indicates that the causal support for a task expres-
sion te ∈ TE, documented by the respective causal links in CL, is not sufficient in order to guarantee that te
will be applicable at execution time. More precisely: Let {te1

ϕ1−→ te, . . . , ten
ϕn−→ te} be the subset of CL that

contains all n causal links that support te.

{te,ϕ} ∈ f det
OpenPrec(P,π) if and only if the following conditions hold:

1. For every state s and for every valuation β that is compatible with VC

s |=M ,β (prec(te)⇒ϕ)

2. There exists a state s and a VC-compatible valuation β such that

s |=M ,β

∧
1≤i≤n

ϕi and s 6|=M ,β prec(te) and s 6|=M ,β ϕ

We may assume that the detection function’s answer is the most specific one, that means, that there is no ϕ ′
such that {te,ϕ ′} ∈ f det

OpenPrec(P,π) and ϕ⇒ϕ ′. •

Intuitively, the first flaw condition states that ϕ is “part” of the task expression’s precondition and the second
condition specifies what it means for a number of causal links not to “cover a precondition completely”
and to leave out the ϕ part. Soundness can easily be verified for f det

OpenPrec: Let P be a solution to π and
furthermore {te,ϕ} ∈ f det

OpenPrec(P,π). Since the flaw has been issued, both conditions have to be valid: ϕ

holds in every state in which the task expression’s precondition holds and it is possible that te is going to be
executed in a state and under a valuation such that its promised support holds, though not its precondition.
This means that there exist ground linearizations of P that are not executable (because of te), which is a
contradiction to POCLP’s solution criteria and the assumption is therefore refuted.

The other new detection function examines whether or not the assured conditions can be confirmed to ac-
tually persist until they are consumed by the linked task. If a state change is confirmed that undoes the
effects of a producer task such that the consumer’s precondition cannot be satisfied at execution time, the
plan fails to provide a solution to the given problem. If however the state change is potentially occurring and
potentially undoing the effect, respectively, POCLP calls this situation a causal threat that might be faced up
to successfully.

Definition 3.12 (Causal Threat). Given a partial plan P = 〈TE,≺,VC,CL〉 and planning problem π =
〈D,sinit ,sgoal ,Pinit〉, the detection function for flaws FThreat points to those constellations of causal links
and tasks in which a task’s effects are able to falsify the annotated condition.

{tei
ϕ−→ te j, tek} ∈ f det

Threat(P,π) if and only if for task expressions tei, te j, and tek ∈ TE with tei
ϕ−→ te j ∈CL:

1. Neither tek ≺ tei nor te j ≺ tek are in the transitive closure of the ordering constraint set of P.

2. There exists a VC-compatible valuation β such that for all states s and s′ the following holds:

if s |=M ,β ϕ and 〈s,s′〉 |=M ,β tek then s′ 6|=M ,β ϕ

•

The above definition captures the notion of being potential of the threat in its first condition with respect to
the execution order of the plan (the threatening step may occur between producer and consumer) and with
respect to the consistent variable assignments (if ϕ holds in the state in which step k is executed, it may
become invalid afterwards). The detection function is sound because of the following argument: Given a
plan P that is a solution to a problem π , let us assume that the causal threat analysis publishes a flaw with
{tei

ϕ−→ te j, tek} ∈ f det
Threat(P,π). According to the flaw detection function, the ground linearizations of P thus

include at least one sequence of operators in which an operator ground instance that corresponds to plan step
tek changes the world state such that the ground instance corresponding to plan step te j is not executable.
This contradicts P being a solution and therefore falsifies our assumption.

94



3.2 Basic System Configurations

Please note that the causal link technique is a more restrictive implementation of the modal truth criterion
[54] because the links “protect” the commitment for their annotated literals over the complete execution time
interval between producer and consumer steps. Hence, it does not allow for the notion of a White Knight
condition reestablishment (see also discussion in [300]).

Modification Generating Functions – ModPOCLP

The POCLP-plan offers some more manipulatable elements than the language fragment for task assignment
planning. The most prominent refinement operators of the current configuration introduce new steps in
a plan for the purpose of goal establishment and establish causal links for explicitly documenting causal
interactions.

Definition 3.13 (Insert Task). For a given partial plan P = 〈TE,≺,VC,CL〉, flaw f, and domain model
D = 〈M ,∆,T〉 over a language L , the modification generating function f mod

InsertTask proposes to add a new
plan step to P, a causal link that serves as a justification for that insertion, and a set of appropriate variable
constraints. More formally:

〈{tep, tep
ϕ−→ tec,v1 =̇τ1, . . .vn =̇τn}, /0〉 ∈ f mod

InsertTask(P,f,D) with

1. tec ∈ TE∩ comp(f) and ϕ ′ ∈ comp(f) being a well-formed formula over L .

2. tep 6∈ TE being a new task expression over a task schema in T.

3. For all states s and all valuations β that are compatible with VC∪{v1 =̇τ1, . . .vn =̇τn} (vi ∈ V and τi
terms over L for 1≤ i≤ n) the following conditions hold:

• tep generates a formula ϕ ′′ such that s |=M ,β (ϕ ′′⇒ϕ).
• s |=M ,β (prec(tec)⇒ϕ)
• s |=M ,β (ϕ ′⇒ϕ).

•

The third construction element of the insert task modification consists of three parts: First, the newly
added task establishes at least the annotated condition ϕ . Second, the annotation matches the precondi-
tion of the consumer task (cf. plan consistency). Third, the annotation represents a necessary condition for
satisfying the flawed formula ϕ ′ and thus a necessary element for establishing the consumer’s precondi-
tion.

This definition may appear unfamiliar at the first glance, which is however due to our slightly more ex-
pressive task representation. If we assume that open precondition flaws as well as the preconditions and
effects of tasks are given by lists of literals, the above conditions can be easily rephrased in terms of stan-
dard approaches as follows: the effect list of the new producer plan step tep contains exactly the flawed
literal ϕ (modulo variable substitutions) and so does the precondition of the flawed plan step. If we transfer
this notion into our approach, we have to take into account that the open fragment of the task precondi-
tion may be any formula and not just a trivial one. For the same reason, the corresponding formula that is
generated by the new producer task may not be trivial, as well. It is also worth noting that in this context
a single task may not suffice to satisfy the open condition completely, hence the last item of the defini-
tion.

Task insertion is trivially a sound plan modification generating function, because it produces refinement op-
erators that address the flawed plan elements and have a positive elementary modification balance.

The other central modification establishes a causal link between two tasks that are both already present in
the plan.

Definition 3.14 (Add Causal Link). For a given partial plan P= 〈TE,≺,VC,CL〉, flaw f, and domain model
D = 〈M ,∆,T〉 over a language L , the modification generating function f mod

AddCLink proposes to add a new a
new causal link to P documenting the causal structure on which the plan is hereby committed, and a set of
appropriate variable constraints.

〈{tep
ϕ−→ tec,v1 =̇τ1, . . .vn =̇τn}, /0〉 ∈ f mod

AddCLink(P,f,D) with
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1. tep ∈ TE, tec ∈ TE∩ comp(f), and ϕ ′ ∈ comp(f) being a well-formed formula over L .

2. tep
ϕ−→ tec 6∈CL being a new causal Link in P.

3. For all states s and all valuations β that are compatible with VC∪{v1 =̇τ1, . . .vn =̇τn} (vi ∈ V and τi
terms over L for 1≤ i≤ n) the following conditions hold:

• tep generates a formula ϕ ′′ such that s |=M ,β (ϕ ′′⇒ϕ). If tep = teinit it may as well not generate
¬ϕ ′′.

• s |=M ,β (prec(tec)⇒ϕ)
• s |=M ,β (ϕ ′⇒ϕ).

•

The main aspects correspond to the previous plan modification. The first item in the last condition is ex-
tended to handle the initial state encoding in the null plan representation: Any action schema is described
in terms of which changes it induces on the environment; any fact that is not contradicting this change, that
means, any fact that is not “affected” by the change, persists. The semantics of the task that represents the
initial state is slightly different such that everything that cannot be deduced positively is assumed to hold
negatively, which is also known as the closed world assumption.

Regarding the soundness property, it holds for this modification generating function for the same reasons as
it did for the task insertion above.

Triggering Function αPOCLP

When deploying the flaw detection and modification generating function above, the following class relation-
ships unfold:

αPOCLP(Fx) =


MInsertTask∪MAddCLink for x = OpenPrec
MAddVarConstr∪MAddOrdConstr for x = Threat
αTAP(Fx) otherwise

The handling of open preconditions is an obvious correlation, because the plan step and causal insertions
directly address the problem of an unsatisfied causal demand. The same holds for the third case, because the
embedded sub-problem of preserving constraint consistency can be adequately dealt with the TAP configu-
ration components.

Note that the treatment of causal threats introduces cross-configuration relations in the POCLP extension.
Concerning the other combinations of POCLP and TAP functions, it is important to point out that there exist
possible triggers, but not necessary ones: the treatment of open preconditions can be addressed by adding a
variable constraint, thereby narrowing down the choices, but the given modification generators can insert the
necessary variable constraints for themselves. There is no gain in terms of an increased applicability range
by indirect flaw resolution in this case. The same holds for the POCLP modification generators, which could
be used for co-designating variables and introducing orderings, but they do not provide additional support
to the TAP functions.

Inference Functions – InfPOCLP

All operators that are causally linked need to be executed in an order that is consistent with the linking. As we
have motivated in the section about the POCLP domain model specifics, we provide the ordering constraints
that are necessary to make the causal link effective via the following inference:

Definition 3.15 (Ordering Constraint Inference). For a given partial plan P = 〈TE,≺,VC,CL〉 and domain
model D = 〈M ,∆,T〉, the inference function f in f

OrdConstraint asks to add an ordering constraint to P if the
plan contains causally linked operators that are not adequately ordered.

〈tei ≺ te j, /0〉 ∈ f in f
OrdConstraint(P,π) if and only if for tei and te j ∈ TE:
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1. For tei = li : ti(vi), te j = l j : t j(v j): ti or t j ∈Tp

2. There exists a causal link teinit for some formula ϕ over L

3. tei ≺ te j 6∈≺

•

This inference function is trivially sound, because it merely adds (properly constructed) ordering constraints.
We note that it is also essential for the configuration to terminate, because it manifests the commitments on
the causal structure in the ordering relation of the plan.

Summary of the POCLP Configuration

With the above definition, the system configuration for performing partial-order planning can be summarized
as the following tuples:

CPOCLP = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask, f det
OpenPrec, f det

Threat},

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr, f mod
InsertTask, f mod

AddCLink},
{ f in f

OrdConstraint},
Str〉

Theorem 3.3 (Properness of CPOCLP). CPOCLP is a proper system configuration in the sense of Def. 3.2.

Proof. The soundness of the detection functions has been shown in the above definitions as well as in the
respective section for TAP planning. DetPOCLP is a complete set of sound detection functions, because for
any plan that is no solution to a problem, at least one flaw is issued. This can be proven by contradition:
Let P be a plan that is no solution to π and assume that no detection function in the POCLP configuration
returns a flaw. When we go through the semantic explanations why P fails to satisfy the solution criteria we
can easily identify that either the TAP sub-problem is not solved or the preconditions of at least one operator
do not hold. The former is handled properly by the respective configuration subset, while the latter can be
divided into two cases: either the precondition does not hold in any state during the ground linearizations of
P or the condition does hold, is however undone before the critical operator occurs. Both cases are addressed
by the open precondition and threat flaw detection functions, thus contradicting the initial assumption that
no flaw is found in P.
ModPOCLP is a semi-complete set of sound modification generating functions. The property has been proven
for the task assignment planning subset before. While soundness of the respective POCLP functions has
been shown with the definitions, individual completeness follows directly from the functions addressing
every possible flaw. The conditions under which no modification for inserting a task or a causal link is
published are obviously characterizing non-refineable plans.
InfPOCLP is a set of sound inference functions.
According to the definition of the triggering function αPOCLP, the set of modification generating functions
ModPOCLP corresponds to the set of detection functions DetPOCLP.

Theorem 3.4 (CPOCLP is Modification-Complete). CPOCLP is modification-complete according to Def. 3.3.

Proof. αPOCLP provides a modification generated from a function in ModPOCLP for any non-critical flaw that
is found by a function in DetPOCLP.
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Figure 3.8: An typical decomposition hierarchy in HTN planning, taken from a disaster relief scenario [26].

3.2.3 Hierarchical Task Network Planning – CHTNP

This system configuration realizes hierarchical task network planning as it is described in the introductory
section 1.1.3. The central idea is that an HTN planning-system does not try to synthesize sequences of
primitive actions that achieve a specified goal state but instead takes a set of abstract tasks that are to be per-
formed and tries to concretize them in a consistent way. The plan generation process consists of recursively
decomposing abstract tasks into networks of sub-tasks (which are basically partial plans) until all steps in
the plan have become primitive.6 Such decomposition alternatives are explicitly declared per abstract task
via so-called methods. A method is a user-specified implementation of an abstract action (see complex task
semantics on p. 41) and a collection of such methods defines what is regarded to be a legal task implemen-
tation. Once a plan becomes primitive, it has to be examined whether its operators are executable or not.
To this end, some of the causal reasoning from non-hierarchical partial order planning can be applied, that
means, causal linking and threat resolution is used to establish and verify that the decomposition is exe-
cutable. Note that this causal reasoning does not include the insertion of operators, therefore the only way
to introduce plan steps is to do so via expansion networks. It is this context-dependency of operators which
turns tasks into goal-like planning objectives and it is one of the key arguments for the greater expressivity
of HTN planning over POCL planning [84].

Fig. 3.8 sketches a task hierarchy as it is induced by a set of decomposition methods within the domain
model of a disaster relief scenario. A complete mission is specified by the root element of the decomposition
hierarchy, the flood-disaster task. Solving the problem means finding an executable decomposition
of this mission task. The shaded ellipses thereby denote the contexts of the respective task networks: the
flood-disaster task is concretized into a plan that consists of securing the embankment of the nearby
river, setting up a logistics centre, evacuating the population, and the like. The evacuation procedure includes
informing the people and then securing them. The latter, the task securing-population in the center
of the figure, can be decomposed in two ways, namely one network that represents assisting the population to
leave the area by their own means and alternatively one for setting up a local infrastructure and transporting
the population in groups to a secure location.

Domain Model Specifics

The HTN planning system configuration CHTNP extends domain models by the concept of user-defined task
implementations or method declarations. It introduces the notion of decomposition domain models, which
are structures of the form DHTNP = 〈M , /0,T,M〉. The logical model M is thereby given as usual, while the

6The most important reference for HTN planning is certainly the work of Erol [83]. He discriminates primitive tasks and operators
(the former without, the latter with effects), whereas our approach does not draw this technical distinction and allows for a direct
decomposition into operators. Furthermore, Erol’s approach delegates the concept of preconditions to constraints in the surrounding
task networks.
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state abstraction axioms are not used in this configurations and therefore ∆ = /0. The task schemata T and
the new method declarations M are described below.

For the operator representations in T we draw on the appropriate general formal definition 2.4 and the previ-
ously introduced CPOCLP configuration, respectively. Concerning the abstract actions, an HTN domain model
contains task schemata for complex task symbols; these schemata do however carry only trivial precondi-
tions and effects. That means, all complex task schemata are of form t(v)= 〈>,>〉.
In the component M of a decomposition domain model, the HTNP system configuration finds the method
declarations, which are defined as follows: m = 〈t(v),〈TE,≺,VC,CL〉〉. The complex task schema t(v) is
the task that is to be decomposed and 〈TE,≺,VC,CL〉 is the appropriate task network into which an instance
of t(v) is to be decomposed. A task network’s structure is thereby identical to that of a POCLP plan, except
for methods being restricted to CL = /0, because we want to reuse some techniques that we introduced for
partial-order planning. Two more aspects are worth noting in this context: First, the variable constraint
set VC may reference parameters of t(v) in order to “pass parameter values” from the abstract task to sub-
tasks in the expansion network. Second, methods do not possess condition-statements for controlling their
applicability; expansion thereby relies solely on the semantics of complex tasks and plan refinements and
is hence independent from the current plan generation situation. Such a declarative method definition is
apparently a contrast to the highly sophisticated method concepts that are realized in the most famous HTN
planning systems (see introduction to HTN planning on p. 13): O-PLAN and SIPE-2 incorporate a number of
specialized linking variants for specifying how to establish inter-decomposition dependencies and the SHOP
system uses a decomposition programming-language. For a more detailed discussion on the pros and cons
of blending search control issues into the domain model see discussion in Sec. 1.1.3 (p. 14) and Sec. 2.8.1
(p. 72). In short, we prefer a declarative modelling style in order to be able to describe an essential quality
of a domain model: the notion of consistency.

HTN domain-model consistency has to take into account method declarations, but since the intended use
of a method is basically to substitute an instance of the specified task schema, the method-aware no-
tion of consistency can be reduced to the respective definition of model consistency in our formal frame-
work.

Definition 3.16 (Consistency of Decomposition Domain Models). A decomposition domain model DHTNP =
〈M , /0,T,M〉 over a given language L is called consistent if and only if the following conditions hold:

1. The included domain model 〈M ,∆,T〉 is consistent (see Def. 2.8).

2. For every method m ∈ M with m = 〈t(v),〈TE,≺,VC,CL〉〉, t(v) is a complex task schema in T and the
partial plan 〈TE,≺,VC,CL〉 is consistent given the included domain model 〈M ,∆,T〉 (see Def. 2.12).

3. For every complex task schema t(v) ∈ T there exists at least one method m ∈ M such that m =
〈t(v),〈TE,≺,VC,CL〉〉.

4. Recursive method definitions must allow for termination: Given a complex task schema t(v) ∈ T, let
m1, . . . , mn be the appropriate methods in M and {T1, . . . ,Tn} the sets of those task schemata Ti ⊆ T
that occur in the respective decomposition network of method mi. Every set Ti can be extended in
an analogous way, that means, by adding all task schemata that occur in the networks of the methods
of the respective complex task schemata in Ti, resulting in sets {Ti1 , . . . ,Tini

}. Let T∗t denote the
transitive closure of this process, in other words, the sets of all task schemata that are referenced in
the decomposition hierarchy. M allows for termination if and only if the following holds:

∀t(v) ∈ T ∃T′ ∈ T∗t t(v) 6∈ T′

•

The termination requirement (together with the finiteness of labeling symbols) is equivalent to the prop-
erty that all expansions will eventually produce task networks that contain only primitive task expres-
sions.

Please note that for the sake of simplicity, we gave a recursive definition of consistency: a domain model
is consistent if all complex tasks are expanded by their methods into consistent plans, which in turn require
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however consistent domain models. Let us sketch a formally more precise, inductive definition: a decompo-
sition domain model without complex tasks and method definitions is consistent if it constitutes a consistent
domain model for partial order causal link planning (see p. 92). A primitive decomposition plan is consistent
to a (consistent) HTNP domain model if it is a consistent POCLP plan with respect to that domain model.
Starting from these two base cases, we can extend our consistent “primitive” domain model by methods that
add implementations for complex tasks such that the contained plan is consistent to the domain model before
the adding. This basically corresponds to a strict “bottom-up” model construction. In view of this Noethe-
rian induction (the extension of the domain model defines a well-founded relation) consistency corresponds
to the fixed point of this model extension.

Problems and Solutions

A problem specification for HTNP is given by a domain model, an initial state, and an initial task network:
πHTNP = 〈DHTNP,sinit ,>,Pinit〉. The initial task network, which is given by Pinit = 〈TEinit ,≺init ,VCinit , /0〉,
typically consists of a number of abstract plan steps, which are the tasks that have to be achieved by exe-
cuting the solution plan. The trivial goal state specification reflects the fact that the only kind of “goals” in
hierarchical task network planning are the complex tasks in Pinit .

A plan P is a solution to an HTN problem specification πHTNP if it is a solution in terms of the general defini-
tion 2.17 and Pdoes not include a plan step that is an instance of an abstract task schema.

Since the primitive plan is essentially treated like in partial-order planning, we opt for the null plan (Def. 2.18)
in order to maintain compatibility with the results from the CPOCLP configuration. It can also be applied in the
HTN context, because the null-plan representation preserves the initial task network. Analogously, we use
the solution plan metaphor (see Def. 2.19) for verifying the general solution criteria in the view of causally
annotated (primitive) plans.

Detection Functions – DetHTNP

HTN planning is concerned about implementing an abstract plan. In the view of the HTNP configuration, the
presence of complex task schema instances is therefore producing a flaw for each occurrence.

Definition 3.17 (Abstract Task). For a given partial plan P = 〈TE,≺,VC,CL〉 and HTNP planning problem
π , the flaw detection function f det

AbstrTask indicates that a task expression te ∈ TE is an instance of a non-
primitive action schema.

{te} ∈ f det
AbstrTask(P,π) with te = l : t(v), te ∈ TE, if and only if t ∈Tc. •

The detection function is obviously sound, because a solution plan does not contain abstract plan steps and
is therefore not flawed.

For reasoning about the primitive plans’ executability, the HTNP configuration relies on components from
the system configuration CPOCLP with its detection functions f det

OpenPrec and f det
Threat. It furthermore inherits

the respective set DetTAP from task assignment planning.

Modification Generating Functions – ModHTNP

Task expansion is the central modification in HTN planning and this is reflected in the HTNP configuration
as well. An abstract task is decomposed by replacing the respective plan step by the expansion network that
is deposited in an appropriate method as specified by the following definition.

Definition 3.18 (Expand Task). Given a decomposition domain model D = 〈M ,∆,T,M〉, a partial plan
P = 〈TE,≺,VC,CL〉, and a flaw f, the modification generating function f mod

ExpandTask proposes for every
occurrence of a complex task schema instance in f a decomposition according to all the appropriate method
definitions in M.

〈TEx∪ ≺x ∪VCx∪ ≺′,{te}∪ ≺′′〉 ∈ f mod
ExpandTask(P,f,D) with
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a : ty(vy) c : tz(vz)b : t(v)

b1 : tx1(vx1)

b2 : tx2(vx2)

b3 : tx3(vx3)

b1 : tx1(vx1)

b2 : tx2(vx2)

b3 : tx3(vx3)

a : ty(vy) c : tz(vz)

b1 : tx1(vx1)

b2 : tx2(vx2)

b3 : tx3(vx3)

a : ty(vy) c : tz(vz)

Figure 3.9: An example expansion in the HTNP configuration.

1. te ∈ TE∩ comp(f) and te = l : t(v) with t ∈Tc

2. ≺′′ is the complete subset of ordering constraints ≺ in which te occurs, that means any constraint
te ≺ teP or teP≺ te for which teP 6= te in P

3. mx = 〈t(v),〈TEx,≺x,VCx,CLx〉〉 ∈ M

4. TEx∩TE = /0, ≺x ∩ ≺= /0, and VCx∩VC = /0

5. ≺′ is the set of ordering constraints tex ≺ teP for which te ≺ teP ∈≺ and tex ∈ TEx, respectively
ordering constraints teP≺ tex for which teP≺ te ∈≺ and tex ∈ TEx

•

The definition makes “replacing” more concrete: Items 1 and 2 define those plan elements that are to be
removed, namely, the complex task expression and all related ordering constraints. In addition to the in-
troduction of the components of the method’s network (items 3 and 4), the MExpandTask plan modifications
adjust the ordering relation of the replaced task’s context. That means, all steps that had been before or after
the complex plan step are now before or after all plan steps in the expansion network, respectively (item 5).
Fig. 3.9 illustrates the replacement.

Task expansion is issued by a sound plan modification generating function: First, it produces refinement op-
erators for addressing the respective flaws, as the decomposition domain models’ consistency provides the
generating function with appropriate task implementations. Second, the expansion has a positive elementary
modification balance, because it always adds more than it removes. Even in the case of a one-to-one ex-
pansion, that means, one abstract task is decomposed into a single primitive operator, the newly introduced
co-designation constraints between the parameters yield soundness. The co-designation becomes necessary
because on the one hand, the parameter binding is needed to ensure that the restrictions on the intended
behaviour are maintained, and on the other hand, the parameters are necessarily syntactically disjoint for the
task expressions in a partial plan.

We would like to point out that, due to the consistency of the decomposition domain model, an implemen-
tation of the method-based task expansion can always answer any flaw that references an abstract plan step.
However, there is also the option to analyze the abstract task’s context, to discover inconsistencies that will
be induced by introducing the respective plan modification, and finally to decide to restrain the plan modifi-
cation. Such an “optimization” is, of course, not affecting soundness or semi-completeness of the generating
function (set).
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The HTNP configuration furthermore employs f mod
AddCLink (Def. 3.14) of system configuration CPOCLP for

documenting causal interactions. It finally also inherits the entire set of modification generating functions
from task assignment planning CTAP (Defs. 3.9 and 3.10).

Triggering Function αHTNP

The triggering function for hierarchical task-network planning employs αPOCLP from the configuration of
partial-order planning for dealing with the causal interactions of primitive operators. The newly introduced
generator for task-expansion modifications is primarily triggered by abstract task flaws, but there is another
application for it: it can answer open-precondition flaws. Causal support for a plan step may be enclosed
in the implementation of an abstract task and causal link insertion therefore has “to wait” until appropriate
producing plan steps appear in the partial plan – a typical indirect flaw resolution.

αHTNP(Fx) =


MExpandTask for x = AbstrTask
MExpandTask∪MAddCLink for x = OpenPrec
αPOCLP(Fx) otherwise

Regarding a causal threat situation, the expansion of an abstract plan step cannot contribute to resolving the
threat because the involved parties are primitive operators.

Inference Functions – InfHTNP

There are no additional inferences necessary to support HTN planning beyond those of partial-order causal-
link planning, that means, InfHTNP = InfPOCLP.

Summary of the HTNP Configuration

With the above function set definitions the following components constitute the HTNP configuration for
performing hierarchical task-network planning:

CHTNP = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask,

DetPOCLP︷ ︸︸ ︷
f det
OpenPrec, f det

Threat, f det
AbstrTask},

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr,

⊂ModPOCLP︷ ︸︸ ︷
f mod
AddCLink , f mod

ExpandTask},

{
InfPOCLP︷ ︸︸ ︷

f in f
OrdConstraint},

Str〉

Note that although this configuration reuses many functions of the partial order causal link configuration,
CHTNP is not an extension of CPOCLP because of the missing task insertion modification.

Theorem 3.5 (Properness of CHTNP). CHTNP is a proper system configuration in the sense of Def. 3.2.

Proof. DetHTNP is a complete set of sound detection functions, because all included functions are sound
and do not leave a non-solution plan unflawed. The latter property has been proven for the solution criteria
violations with respect to the executability of operators; the remaining source of failure for a plan is the
fact that not all tasks have been decomposed, which is verified by the HTNP detector for abstract tasks. The
question whether or not compatible methods have been chosen for implementing the complex tasks is finally
answered via executability analysis and constraint set coherence.
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ModHTNP is a semi-complete set of sound modification generating functions. The soundness of all included
modification generators has been shown individually. Semi-completeness for the set is given, because it has
already been shown that the property holds for the sub-configurations (that do not interact with the newly
introduced functions), and the task expansion function guarantees by its definition that any flaw is addressed
properly (Def. 3.18 and discussion).

Soundness of the inherited inference function sets has already been shown, InfHTNP is therefore sound as
well.

The set of modification generating functions ModHTNP corresponds to the set of detection functions DetHTNP
because the configuration provides suitable flaw classes for every generated modification class.

Theorem 3.6 (CHTNP is Modification-Complete). CHTNP is modification-complete according to Def. 3.3.

Proof. All included configuration components do answer any non-critical flaw.

Now that we have specified the action-based partial-order configuration as well as the action abstracting
hierarchical planning configuration, we are ready for the first enhanced configuration, namely that for hybrid
planning.

3.3 Enhanced System Configurations

3.3.1 Hybrid Planning – CHYBP

In this first integrating system configuration we are extending the partial-order and HTN configurations
such that the extension implements the hybrid planning paradigm like we have discussed in the introduc-
tory Sec. 1.1.4. We would like to repeat at this occasion that for many real-world domains, approaches
that integrate hierarchical task decomposition with action-based planning prove to be most appropriate (cf.
Sec. 1.1.4). On the one hand, human-expert knowledge can be represented and exploited by means of tasks
and methods, which describe how abstract tasks can be decomposed into predefined plans that accomplish
them.7 On the other hand, the flexibility to come up with non-standard solutions (synthesizing plans from
scratch) or to overcome incompleteness of the explicitly defined solution space (completing under-specified
procedural knowledge) results from the option to insert tasks and primitive actions like in POCL planning.
Fig. 3.10 illustrates this flexibility: the abstract transport action can be decomposed into a task network
that implements the basic way of transportation, loading the good into a vehicle, moving that vehicle to the
destination, and unloading the good there. Non-standard tasks that have to be performed on demand include
refuelling the vehicle or bringing the vehicle to the loading location.

Hybrid planning enables furthermore reasoning about causal interactions on any level of abstraction. That
means, threat handling and condition establishment can be initiated and performed on more abstract and
hence easier-to-manage plans. The precise abstraction can be chosen opportunistically, because all decisions
and implicit commitments are propagated into the refinements.

Domain Model Specifics

Hybrid planning makes use of all domain model components that have been introduced for partial-order and
hierarchical task network planning above. The CHYBP system configuration thus works on hybrid domain
models DHYBP = 〈M ,∆,T,M〉. The logical model M is given as usual and ∆ is a set of state abstraction
axioms as described in Def. 2.1. The task schemata T comprise primitive operators and complex tasks that
both carry preconditions and effects, respectively postconditions. As we employ the operator representation
of CPOCLP, all classes of actions are now built over the same syntactic features.8 The method declarations

7Note that we continue advocating the declarative modelling paradigm. The captured knowledge is that of a domain expert and not
of a planning-for-that-domain expert. That means, the modelled decomposition is a natural one in terms of the application domain.

8Remember that, technically speaking, complex tasks’ postconditions are arbitrary formulae while an operator postcondition is re-
stricted to a conjunction of literals. In most practical cases however, task postconditions adhere to the same conjunctive structure.
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transport(g, to)

g=g'
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Figure 3.10: The completion of user-defined procedural knowledge in hybrid planning. After the decom-

position of the complex transportation task, any of the four support tasks may be added on
demand.

M are the same kind of user-defined task implementations as presented in the HTNP-configuration model
above. The only difference is that task networks in hybrid planning are not restricted to empty causal link
sets.

The previously introduced concept of decomposition domain model consistency has been defined in the con-
text of CHTNP, in which there is no semantic relationship between complex tasks and their implementing net-
works. This “deficiency” of HTN planning is addressed in hybrid planning: The user-defined implementation
has to comply with the abstract state transition that is induced by the complex task.

Definition 3.19 (Consistency of Hybrid Domain Models). A hybrid domain model specification DHYBP =
〈M ,∆,T,M〉 over a given language L is called consistent if and only if the following conditions hold:

1. The included decomposition domain model is consistent (see Def. 3.16).

2. For every method m ∈ M with m = 〈t(v),〈TE1,≺1,VC1,CL1〉〉, the included decomposition network
〈TE1,≺1,VC1,CL1〉 is an implementation of t(v) (see page 41).

•

Although verifying the consistency of a given hybrid domain model is considerably more complex than vali-
dating the same property for a decomposition or POCLP domain model, it is a worthwhile expenditure of (off-
line) computation time. The procedure becomes feasible by “unfolding” state abstraction axioms, thereby
breaking down the causal structure of the tasks to the most primitive level, at which classical causal analysis
can be conducted (see also Sec. 2.8.4 of the formal framework discussion).

The hybrid plan data structure is the same as for the general partial plan (Def. 2.9) with the consistency
criteria given in Def. 2.12.

Problems and Solutions

The hybrid planning problem specification is simply a combination of HTN- and POCL-like descriptions:
πHYBP = 〈DHYBP,sinit ,sgoal ,Pinit〉. Like in hierarchical task network planning, all (complex) tasks in the
initial plan Pinit have to be accomplished in the given initial situation and, like in partial-order planning, the
plan has to satisfy the goal state specification.

That means, a plan P is a solution to the hybrid planning problem, if and only if P is a solution to the
included POCLP and HTNP problem, respectively, and that means if it is a solution to the general problem
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〈D,sinit ,sgoal ,Pinit〉 as we have defined it in Def. 2.17. Note that the reduction on the general domain model D
is done by “removing” the user-defined methods from the hybrid domain model DHYBP.

Like we did for the extended configurations, the hybrid planning configuration represents its problems and
solutions as null plans (Def. 2.18) and solutions plans (Def. 2.19), respectively.

Detection Functions – DetHYBP

Setting up detection functions for hybrid planning is very simple: We can just employ the complete set
DetHTNP of the hierarchical task network configuration. For triggering the expansion of complex tasks in
the plan the detection function f det

AbstrTask is used. The treatment of causal interactions is postponed in
HTN planning indirectly by the fact that no complex task can participate in precondition and effect calcu-
lations. By extending the representation as described above, the abstract tasks are automatically examined
properly by the open precondition and threat detection functions that have been introduced by the partial-
order configuration. The task assignment planning flaws are also directly transferable without change.

Modification Generating Functions – ModHYBP

Hybrid planning has a particular focus on the task expansion technique, because the causal interactions
that have been established on the abstract level have to be carried properly into the refinement. Note that
in principle, a loss of causal links during a task decomposition would not endanger the plan generation as
such, basically because causal links are not carrying information that is relevant for the plans’ semantics.
They do however represent a considerable amount of commitment information that is too valuable to be
re-established after every expansion of a task.

In order to guarantee a proper re-establishment of information about commitment to a causal structure,
our hybrid planning configuration employs the following update of the task expansion modification genera-
tor.

Definition 3.20 (Expand Task – Redefined). Given a hybrid domain model D = 〈M ,∆,T,M〉, a partial plan
P = 〈TE,≺,VC,CL〉, and a flaw f, the redefined modification generating function f mod

ExpandTask proposes for
every occurrence of a complex task schema instance in f a decomposition according to every appropriate
method definition in M as follows.

〈TEx∪ ≺x ∪VCx∪CLx︸ ︷︷ ︸
expansion network

∪
new context︷ ︸︸ ︷
≺′ ∪VC′∪CL′, {te}︸︷︷︸

complex task

∪
old context︷ ︸︸ ︷
≺′′ ∪CL′′ 〉 ∈ f mod

ExpandTask(P,f,D)

The expansion network is thereby substituting the complex task in consideration of its temporal and causal
context.

More formally, the plan modification consists of the following components:

1. te ∈ TE∩ comp(f) and te = l : t(v) with t ∈Tc

2. ≺′′ is the complete subset of ordering constraints ≺ in which te occurs, that means any constraint
te ≺ teP or teP≺ te for which teP 6= te in P

3. CL′′ is the complete subset of causal links CL in which te occurs, that means an link te
ϕ−→ teP or

teP
ϕ−→ te for which teP 6= te in P

4. mx = 〈t(v),〈TE1,≺1,VC1,CL1〉〉 ∈ M

5. TEx∩TE = /0, ≺x ∩ ≺= /0, VCx∩VC = /0, and CLx∩CL = /0

6. ≺′ is a set of new ordering constraints tex ≺ teP for every te ≺ teP in P and tex ∈ TEx, respectively
teP≺ tex for every teP≺ te in P and tex ∈ TEx

7. VC′ and CL′ are sets of new variable constraints and causal links such that:
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a) For each incoming causal link teP
ϕ−→ te ∈CL′′, let TE ′x ⊆ TEx be a set of task expressions such

that for any state s and valuation β that is compatible with VC∪VCx∪VC′:

s |=M ,β

 ∧
tex∈TE ′x

prec(tex)

⇒ϕ

TE ′x is thereby a minimal set in the sense that if any task expression is removed, the equation
does not hold. Let furthermore ϕi be a formula for each tei in TE ′x such that

s |=M ,β (prec(tei)⇒ϕi)∧ (ϕ⇒ϕi)

For each pair of plan steps texi and formulae ϕi, the set CL′′ includes a causal link teP
ϕi−→ texi .

b) For each outgoing causal link te
ϕ−→ teP ∈CL′′, let TE ′′x ⊆ TEx be a set of task expressions such

that for any state s and valuation β that is compatible with VC∪VCx∪VC′:

s |=M ,β

 ∧
tex∈TE ′′x

post(tex)

⇒ϕ

TE ′′x is thereby a minimal set in the sense that if any task expression is removed, the equation
does not hold.9 Let furthermore ϕi be a formula for each tei in TE ′′x such that

s |=M ,β (post(tei)⇒ϕi)∧ (ϕ⇒ϕi)

For each such pair of plan steps texi and formulae ϕi, the set CL′′ includes a causal link texi

ϕi−→ teP.

•

The annotated plan modification structure at the beginning of the above definition is reflected by the formal
criteria in the following way: Item 1 addresses the complex task that is referenced by the flaw and that is
therefore to be expanded. Since the plan step is going to be removed, its temporal context (item 2) and causal
dependencies (item 3) are removed as well. The parameters of the task remain in the variable constraints
in order to preserve binding commitments. Item 4 relates the complex task with one of the user-defined
methods. The introduction of the method’s new task network components into the partial plan is described
in item 5. “Applying” the method implies some management with respect to task-expression labels and
variable names: the new components have to be provided with appropriate identifiers that are unique in
the respective partial plan. Items 6 and 7 represent the re-establishing of the temporal, respectively causal
context for the task expressions in the expansion network. The ordering constraints that are imposed on
the abstract plan step oblige its implementation to respect the same temporal restrictions and therefore all
sub-tasks are ordered according to the complex task. The rationale behind the causal link manipulations
is to “redistribute” causality among appropriate sub-tasks. That means, first, that incoming causal links
(item 7a) are re-established on those steps in the expansion network that carry a precondition of which the
complex task’s precondition is an abstraction. Second, those concrete effects in the expansion network that
are sufficient for the abstract effects of the complex tasks on which the plan has been committed are the new
origins for the corresponding outgoing causal links (item 7b).

Fig. 3.11 illustrates the re-establishment of the causal structure in an example situation. The (complex or
primitive) tasks tep and tec are producing two precondition atoms P1(y) and P2(z) for the complex plan step
te, respectively consuming its effects in terms of an atom Q(z). The right hand side of the figure depicts a
task network for expanding the complex task, consisting of three sub-tasks that are temporally and causally
linked in a way such that te1 and te2 are to be executed before te3.

The shaded area in the figure shows the application of an appropriate plan modification after definition
items 1–6 have been put into effect; the depicted atomic formulae represent some precondition and effect

9If the respective plan step is obtained from a primitive task schema, we may assume that post(tex) denotes a formula that is generated
by tex.
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Figure 3.11: Task expansion in the hybrid planning configuration – an example for the re-establishment of
causality.

literals of the respective plan step, and on the right side two state abstraction axioms are given. Atoms
over relation Q are not refined and task te1 carries a suitable atom in its postcondition: the commitment
to the more abstract causal structure as it is represented by the removed causal link te−Q(z)→ tec is
therefore re-established (cf. definition item 7b) by introducing the “new” causal link te1−Q(z)→ tec and
the corresponding variable co-designation constraint y1 =̇z.

Regarding the incoming causal links (cf. definition item 7a), let us begin with examining the inheritor of
the abstract causal link tep−P2(z)→ te. According to the second state-abstraction axiom, an atom over P2
represents an abstraction of an atom over P′2 or R2 – the former is the symbol that is used in the precondition
of te2. The causal commitment is therefore refined into the link tep−P′2(z2)→ te2 and the co-designation
constraint z=̇z2. Note that making the causal commitment more specific imposes further constraints on
future developments of the current plan. After the depicted expansion, tep is intended to produce an effect
that subsumes the more concrete atom P′2(z2), and if tep is abstract, its future expansion will have to be
compatible in this sense with the expansion of te.

For the second causal link, that is tep− P1(y)→ te, note the first state-abstraction axiom, which relates
the abstract atom P1(x) with the conjunction P′1(x)∧P′′1 (x) or alternatively with the atomic formula R1(x).
The latter is apparently not supported by the sub-tasks in the expansion network but the former is: te1
carries a positive literal over the P′1 relation symbol in its precondition, and te3 does so for P′′1 . In this
situation, the incoming abstract causal link is split into two more concrete links in the partial plan, the
depicted tep−P′1(y1)→te1 and tep−P′′1 (y3)→te3 (together with the appropriate co-designation constraints).
The third segment of Fig. 3.11 shows the plan after the described application of the plan modification is
completed.

The example shows that the redistribution of causality does not necessarily result in plans in which the
incoming links are connected to the leading sub-tasks and outgoing links to the terminal steps. Moreover,
it is this way of causality handling that provides hybrid planning with the flexibility to produce overlapping
implementations of complex tasks. It is also a benefit of the causal link introduction in the partial-order
configuration CPOCLP that causal links do not automatically induce an ordering constraint on the involved
plan steps: We first commit to the causal structure and maintain flexibility (for overlapping parts of the plan)
until temporal commitment becomes inevitable.

Note that according to Def. 3.20 the modification generating function f mod
ExpandTask has to account two com-

binatorial factors when computing the expansion of a specific flawed complex task: First, it has to consider
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all available method specifications. It is thereby not relevant whether or not the generator filters out those
methods that will produce inconsistent plans as such flawed plans will be discarded later. Second, if the
causal structure cannot be re-established unambiguously then one plan modification has to be generated
for each permutation. This is the case if either two tasks in the expansion network carry the appropriate
preconditions or effects, respectively, or if the decomposition axioms allow for an ambiguous interpretation
of the network; in both scenarios two minimal sets for re-linking exist (TE ′x in item 7). For each complex
task te, the hybrid expansion generator therefore issues |methods for te| · |linking permutations| many plan
modifications.

Regarding soundness of the redefined task expansion, the arguments concerning the initial modification
generator in Def. 3.18 remain valid and therefore f mod

ExpandTask is sound.

Triggering Function αHYBP

The purely hierarchical and action-based aspects of hybrid planning are perfectly covered by the triggering
functions of the HTNP and POCLP configurations, which are therefore reused in CHYBP. In particular, it has
to be emphasized that causal reasoning in the POCL configuration components is based on the semantics of
states and hence takes into account the state-abstraction axioms. It thereby automatically mediates between
producing and consuming plan steps at different levels of abstraction.

αHYBP(Fx) =


MExpandTask∪αPOCLP(Fx) for x = OpenPrec
MExpandTask∪αPOCLP(Fx) for x = Threat
αHTNP(Fx) otherwise

The updated expand task modification substitutes the previous HTN version in the ordinary task expansion
situation as well as in the search for a suitable precondition establisher. Since in hybrid planning the causal
interactions also concern abstract tasks, αHYBP has to consider task expansion as an additional means for
resolving causal threats. The rationale for this relationship is twofold: First, the conflict may be resolved
immediately if the variable constraints that are included in the expansion network ruled out the respective
co-designations (separation by expansion). Second, refining the abstract causality into a structure of finer
granularity provides the configuration with additional ordering options (promotion and demotion on atomic
complex tasks versus overlapping implementations).

Inference Functions – InfHYBP

There are no additional inferences necessary to support hybrid planning beyond those of hierarchical task-
network planning. We therefore have InfHYBP = InfHTNP.

Summary of the HYBP Configuration

CHYBP, the system configuration for hybrid planning, is composed of the following function sets:

CHYBP = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask,

DetPOCLP︷ ︸︸ ︷
f det
OpenPrec, f det

Threat,

DetHTNP︷ ︸︸ ︷
f det
AbstrTask},

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr,

ModPOCLP︷ ︸︸ ︷
f mod
InsertTask, f mod

AddCLink, f mod
ExpandTask},

{
InfPOCLP︷ ︸︸ ︷

f in f
OrdConstraint},

Str〉

Theorem 3.7 (Properness of CHYBP). CHYBP is a proper system configuration in the sense of Def. 3.2.
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Figure 3.12: The peripheral-delivery example with additional temporal information. The screenshot is taken
from OmniPlan, c©2006 The Omni Group.

Proof. As CHYBP extends CPOCLP as well as CHTNP, the respective properness results of theorems 3.3 and 3.5
are sufficient for this configuration. The redefinition of the modification generator for task expansion does
thereby not affect semi-completeness of the ModHYBP, respectively invalidate its correspondence property.

Theorem 3.8 (CHYBP is Modification-Complete). CHYBP is modification-complete according to Def. 3.3.

Proof. The property follows directly from theorems 3.4 and 3.6.

3.3.2 Temporal Planning – CTTAP

The ability to reason about temporal phenomena and their relationships is an important issue for many
applications of artificial intelligence and so it is also for the area of planning. The previous configurations
suggested that actions are atomic and hence instantaneous events that induce change on the otherwise time-
less states. Since plans produce sequences of successive states, our conceptualization of time can so far
be regarded as an implicit and qualitative one. However, most real-world application domains require an
explicit representation of quantitative temporal knowledge. This includes knowledge about at what time
plan execution is intended to start, what the defined deadlines are for achieving the planned goals, and how
long an action takes to be executed. As a first step towards implementing a system with real-world-suitable
scheduling capabilities, we introduce in the following sections an extension of task assignment planning with
a simple quantitative temporal model. The rationale behind CTTAP is to present a system configuration that
encapsulates the functionality for temporal reasoning at least premises with respect to the domain model.
Since we extend the TAP configuration, temporal planning can be easily integrated with any complex system
configuration. In particular, if a more sophisticated temporal model is needed, this configuration can be
safely replaced.

An example for a task assignment plan with additional temporal information is given in Fig. 3.12. In the
depicted project definition, starting time for the first task is Tuesday, May 29th, 2007, at eight o’clock.
Employee Jones obtains the requirements for a laser copier, which is to be purchased for “desk 10”, within
three hours (task 1.1.1), before he is picking up the phone to collect appropriate offers within the following
working day, and so on. As we have noted for the TAP configuration, commercial project planning tools
do neither reason about parameter dependencies (they require parameter bindings or, according to their
terminology, resource assignments) nor perform any search. They do however support a set of temporal
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sa sa'

sb'sb

oa(va)

ob(vb)

t1 t2 t3 t4

Figure 3.13: The state-transition view on temporally overlapping operators.

constraint types like precedence of tasks, task start times and deadlines, follow-up tasks, etc., which goes
beyond the representation capabilities of the current task assignment planning domain model. This chapter’s
discussion section will address enhanced temporal representations.

In order to provide a coherent picture, the temporal dimension has to be added carefully to our formal frame-
work. On the one hand, it appears natural to assume that time is an integral part of a state description, for
example, as a flexible constant that represents a global clock. This is consistent with our view of states as
arbitrarily small temporal entities, “snapshots of the world”, or “moments”. As a consequence, time passes
between states, and the clock proceeds explicitly via corresponding term updates that increase the time con-
stant accordingly. On the other hand, introducing parallelism in this way becomes a problematic issue, since
the underlying semantics of our approach is inherently connected to sequences of state transitions. As we
have argued in Sec. 2.8.3, the formal framework does not exclude pseudo-parallel operators, because they
represent atomic transitions that may occur arbitrarily close to each other and therefore appear as simulta-
neous events to an observer. Temporally extended state manipulations, however, introduce the problem that
is depicted in Fig. 3.13: Let us assume two operators oa(va) and ob(vb) with oa(va) being executed at time
point t1 and ending at t3 and with ob(vb) lasting from t2 to t4, respectively. The black dots on the operator
time lines represent the corresponding elementary operations, that means, updates of the flexible symbol
interpretations10. It is important to note that although we know in which order these elementary operations
occur, we cannot deduce much at which point in time because the “intermediate” interpretation may not
have updated its clock yet (not to speak of other undefined interpretations); the elementary operations are
below our modelling horizon and are therefore only virtual time points. While states sa and sb′ are covered
by our operator semantics, states sb and sa′ are not because it cannot be deduced from the model which
“portion” of oa(va)’s elementary operations is already implemented at the exact time point at which ob(vb)
starts. For the same reason, it is specified by the temporal relation that oa(va)’s effects hold in sa′ but we
do not have any information about the sub-atomic state changes that have been induced by ob(vb) up to this
point. Last, but not least, the update of the clock is neither necessarily the last operation in the chain nor can
it be synchronized such that the time update of the earlier operator occurs before that of the later operator.
These problems seem to have been addressed in temporal extensions to PDDL by interpreting actions as
triples, which consist of an initial, intermediate, and conclusive virtual sub-operator [99]. However, since
these action fragments are causally atomic entities by themselves, we feel that our problem of finding an
adequate representation has been solved only superficially.

What appears as a dilemma turns out to be a valuable insight into the nature of temporal planning. First, it
does not necessarily make sense to incorporate the progression of time via operator updates. If we, instead,
let time “pass” in the sense of an external and uncontrollable event and if we understand the temporal
extension of actions as rather “watching” than setting the clock at the beginning and at the end of an operator
execution, then we do not have to address the problem of synchronizing term updates or waiting actively
for time to pass. As a positive side effect, the time points do not multiply: For computing the update of
the clock, its initial value is assessed in sb. With State sa′ in Fig. 3.13 happening potentially before the
actual update operation, a recalculation of that value is implied and a new clock value has to be created and

10Please note that although we are not going to use the state changes in this configuration, we do however have to deal with it later.
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introduced. The second insight is that an explicit treatment of parallel actions does not contribute to our
framework, because we cannot infer any coherent state description for the (semi-) parallel threads on this
level of abstraction. We therefore suggest to retain the atomicity of operators.

The conclusion is simply the following: abstract causal reasoning should be done by means of the framework
while the more detailed temporal reasoning is performed in a meta-level calculus that is synchronized with
the framework via a symbolic clock representation. Let us briefly motivate why this is a conceptually clean
and semantics preserving way of integrating time into the system configuration.

Assume that we deploy a temporal reasoning mechanism for dealing with the time points and durations
like those shown in Fig. 3.13. If this mechanism infers that t3 has to happen strictly before t2 then the
underlying plan has to add an ordering constraint between operator oa(va) and ob(vb) and vice versa. Plan
executability is determined in the usual way according to Def. 2.11. In these simple situations, it is easy to
see that the temporal subsystem is a mere book-keeping entity that performs all necessary computations and
that communicates with the formal framework interpretation of the partial plan technically via the shared
symbols for the four time points t1 to t4.

The intervals [t1, t3] and [t2, t4] are allowed to overlap in any way (which ways are admissible is depending
on the underlying temporal model) if and only if this is consistent with the ordering constraints and if two
operators do not interfere on the shared time slice, say, on the interval [t2, t3]. This is apparently an exact
correspondence with respect to the causal threat situation in partial-order planning (Sec. 3.2.2), because the
potentially interfering elementary modifications may appear at any point in time and in particular in the worst
case, that is, during the shared section. Hence, the time interval that has to be protected is in every case that
of the complete operator duration. In other words: two actions may overlap if and only if their preconditions
and effects do not interfere negatively, otherwise they have to be strictly ordered. As a consequence, a
partial plan with overlapping durative actions can only constitute a solution to a given planning problem if
the non-temporal representation is a solution in the usual sense of Def. 2.17.

Concerning causal dependencies between plan steps, the above principle has to be applied as well, that
means, every state feature may be set at the latest possible point in time by the effect producer, while it
may be required at the earliest possible point in time by the condition consumer. An action is consequently
only executable if its precondition is satisfied by the initial state and the effects of the strictly preceding plan
steps.

We would like to note that this domain model design may appear to employ a rather strict notion of tempo-
rally extended actions (cf. PDDL [99], temporal relation algebra [5], etc.). It is however reasonably concise,
that means, its semantics are clear and there are no highly specialized construction features to be consid-
ered [188], and the puristic operator concept will be augmented by our abstraction mechanisms for the
hierarchical planning configurations below.

These considerations apply, of course, to all kinds of sharable, strictly consumable resources. Time is how-
ever the only practically relevant resource of that kind and therefore deserves a specific treatment.

Domain Model Specifics

The domain model representation for the TTAP system configuration is based on the task assignment plan-
ning model, that means, DTTAP = 〈M , /0,T〉. While M is our usual logical model, T denotes a set of tempo-
rally extended operator schemata: o(v) = 〈>,ε,dmin

o ,dmax
o 〉. The schema extensions dmin

o and dmax
o represent

the minimal and maximal duration of the operator, that means, the amount of time the execution of that ac-
tion is going to take. We may assume that all duration annotations in DTTAP are specified as natural number
symbols that refer to the same time base, for instance, minutes.11

Definition 3.21 (Consistency of Temporal Domain Models). A temporal domain model DTTAP = 〈M , /0,T〉
over a given language L is called consistent if and only if the following conditions hold:

1. The included domain model 〈M ,∆,T〉 is consistent (see Def. 2.8).

11We refer the reader to the discussion about representing natural numbers in our framework in Sec. 2.8.3.
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2. For every temporally extended operator schema in T with o(v) = 〈>,ε,dmin
o ,dmax

o 〉 the following
inequation holds: 0≤ dmin

o ≤ dmax
o < ∞

•

A TTAP plan extends the task assignment plan data structure as follows: P= 〈TE,≺,VC,TC〉. It consists of a
partially ordered set of parametrized tasks (given as usual by the sets TE and≺), a set of variable constraints
VC, and a set of temporal constraints TC. The constraints in TC represent the temporal information as a
simple temporal problem (STP) [71], a representation formalism that allows to implement a point algebra
efficiently [53] and that has been successfully deployed in the planning context (see discussion section). TC
is a constraint system (z,d,c) with z being a set of variables that represent time points and d : z→ IR+

0 a
function for assigning sets of real numbers (including the symbol ∞ for representing an infinite amount of
time) to each variable in z. The set of real numbers dxi that is assigned by d to a variable xi ∈ z is called the
domain of that variable. The set c is a set of unary and binary constraints. A binary constraint represents the
temporal distance between two time point variables xi and x j by an interval [min,max] such that the equation
min≤ x j− xi ≤ max holds. A unary temporal constraint specifies a time point x by an interval [early, late],
which means that early≤ x≤ late.

The temporal network specifies for each task expression te ∈ TE over an operator schema o(v) two time
points that denote the beginning and the end of the task: start in [0,∞) and end in [start +dmin

o ,start +dmax
o ].

The symbols for these time points are the clock markers that will be used for synchronizing the temporal and
the non-temporal representations. Since we need two of these markers per task expression, corresponding
to the states that are involved in the task’s transition, M does only need to contain a finite number of
additional constants as distinguishable state marker symbols. For every two task expressions tei, te j ∈ TE
that are instances of operator schemata oi(vi) and o j(v j), respectively, and for which tei ≺ te j holds in
the transitive closure of the ordering relation, consequently the temporal relation endmax

ti ≤ startt j holds in
TC, that means, their temporal distance is given by the interval [0,∞). Conversely, for every two tasks
for which endmax

ti ≤ startt j holds in TC, the transitive closure of the plan’s ordering relation has to contain
tei ≺ te j.

Definition 3.22 (Consistency of Temporal Plans). A temporal plan P = 〈TE,≺,VC,TC〉 over a given lan-
guage L and domain model DTTAP is called consistent if and only if the following conditions hold:

1. The included partial plan P = 〈TE,≺,VC,CL〉 with CL = /0 is consistent over the included non-
temporal domain model (see Def. 2.12).

2. TC is a consistent temporal constraint network, that means, there exists an assignment of domain
values to temporal variables that satisfies all equations induced by TC.

•

Problems and Solutions

A TTAP problem for a given consistent temporal domain is specified by the following structure: πTTAP =
〈DTTAP,sε ,>,Pinit〉. The initial plan Pinit is thereby a (consistent) temporal plan, while the other components,
the empty initial default-state and the trivially satisfiable goal state description, are defined analogously to
task assignment planning problems. Please note that we do adopt the notion of a null plan regarding the
problem definition (Def. 2.18). This representation encodes the initial and goal states as artificial actions
in the plan, which makes them referable in temporal constraints. The corresponding artefacts in the tem-
poral constraint set TCinit allows for specifying the starting time of the plan, the maximal makespan, or
the deadline, etc.; another common usage of the temporal constraints is the explicit definition of clips and
struts [100]. Please note that the regular temporal activity specifications, for example their duration, are
given in the task schemata and not in the initial plan’s constraint set, which is used for problem-specific
temporal restrictions.

Given a temporal planning problem πTTAP = 〈DTTAP,sε ,>,〈TEinit ,≺init ,VCinit ,TCinit〉〉, the temporal plan
P= 〈TE,≺,VC,TC〉 is a solution to πTTAP if and only if the following conditions hold:
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1. The included task assignment plan P′ = 〈TE,≺,VC〉 is a solution to the included TAP problem π ′TAP =
〈DTAP,sε ,>,〈TEinit ,≺init ,VCinit〉〉. Domain model DTAP is thereby the corresponding task assignment
model with non-temporal versions of the operator schema definitions.

2. TC is consistent.

3. TC is a refinement of TCinit , that means, all solutions of TC are also solutions of TCinit .

4. TC is complete with respect to TE and ≺:

a) For every te = l : t(v) ∈ TE, TC contains a constraint startte in [a,b] for some a ≥ 0 and b < ∞

or [a,∞), respectively, as well as endte in [startte +dmin
t ,startte +dmax

t ].
b) For every ordering relation tuple tei ≺ te j in the transitive closure of ≺, every solution to TC

satisfies the in-equation endmax
oi
≤ starto j .

* No temporal variable starto or endo in TC is constrained by an infinite upper bound.

The solution criteria reflect the two reasoning layers: the first criterion grounds TTAP plan generation in
the underlying task assignment plan, the second and third guarantee that our plan refinement methodology
is adopted, and the fourth twin criterion realizes the synchronization of the temporal and the non-temporal
layer. Please note that the solution does not necessarily finalize the temporal assignments, that means, the
solution may contain time intervals for the start of actions, etc. (cf. Def. 2.19 for solution plan). Analogously
to action serialization and variable binding in task assignment planning, we intend by the last, optional
criterion that all time intervals have to be “defined” in the sense that the start and end of every task are not
unspecific intervals with infinite endpoints.

We are now ready to operationalize the solution criteria in the detection functions.

Detection Functions – DetTTAP

The most prominent detection function that is specific for temporal planning is the following one; it detects
occurrences of intervals for time variables that collapse and temporal distances that become negative. The
flaw structure is analogous to the inconsistency detections on the variable and ordering constraint sets: we
collect all variables in TC for which we can verify a constraint violation and map them onto the involved
plan steps.

Definition 3.23 (Temporal Inconsistency). For a given temporal plan P = 〈TE,≺,VC,TC〉 and planning
problem π , the flaw detection function f det

TempInconsistency indicates that the temporal constraints in TC have
become inconsistent.

Given that TC is inconsistent, let {x1, . . . ,xn} be those temporal variables in TC for which no value assign-
ment can be found, in other words, for which a unary constraint implies an empty interval or which are
involved in a temporal distance constraint that evaluates to an empty interval. Then f det

TempInconsistency(P,π)
is the set of task expressions {te1, . . . , tem} ⊆ TE such that for any 1 ≤ i ≤ n there is a 1 ≤ j ≤ m with xi
being startte j or endte j . If no such association can be found, the set includes teinit and tegoal instead. •

Since the flaw directly implements the beforehand given solution criterion of constraint consistency, it is triv-
ially sound. Please also note that his flaw class is a critical one according to Def. 2.35.

The above flaw definition assumes that the deployed constraint reasoning mechanism may have some infor-
mation about specific temporal constraints that are violated. Pleas note that this knowledge is in general an
artefact of the reasoning system, because after the first occurrence of a range collapse, the propagation algo-
rithms typically stops as there is nothing to deduce from an inconsistent constraint set. For reasoning about
the STP, we currently deploy a dynamic AC-3 based constraint reasoning approach [47] that maintains the
temporal constraint network arc-B-consistent (cf. [168]). Therefore, we mainly use the flaws’ plan step ref-
erences as an explanatory suggestion in cases where specific temporal modifications evoke the inconsistency
locally, for example, in an optimization effort. If the algorithm has no such insight into the inconsistency or
if an affected variable cannot be associated to a plan step for some other reason (the hierarchical extension,
for example, will introduce such auxiliary variables) then the detection function generalizes that the whole
temporal chain became invalid from the initial state up to the goal state.
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Exceeding a maximum makespan or passing a deadline is also covered by the above detection function:
the corresponding interval for starttegoal will induce a network inconsistency if the starting time cannot be
realized.

Definition 3.24 (Open Time Variable Binding). For a given temporal planning problem π and consistent
temporal plan P = 〈TE,≺,VC,TC〉, the flaw detection function f det

OpenTmpBind indicates that the temporal
constraints in TC allow for a more precise scheduling of the tasks.

Let {x1, . . . ,xn} be those temporal variables in TC for which the constraints support an infinite value, that
means, for every xi with 1 ≤ i ≤ n there is a solution to TC that includes the assignment xi = ∞. Then
{te} ∈ f det

OpenTmpBind(P,π) with te ∈ TE being the task expression for which xi ∈ {startte j ,endte j}. •

This definition covers the optional solution criterion and is only included in the configuration if the appli-
cation requires finite time bounds in any circumstance; unbound time variables can only occur in problems
with unspecified deadline, because otherwise an upper bound would be propagated. We would also like
to point out that the open time variable binding flaw class is a prototypical example for understanding a
temporal quality as a plan deficiency. As we will address in the discussion of this chapter, the notion of
opportunity – in this case the opportunity to reduce the slack time or the makespan – will be introduced in
future temporal planning configurations via detection functions of that kind.

For reasoning about the consistency of partial plans, this configuration inherits the detection function set
DetTAP = { f det

OrdIncons, f det
VarIncons, f det

OpenVarBind, f det
UnordTask} from the task assignment planning system con-

figuration.

Modification Generating Functions – ModTTAP

The refinement options for temporal planning are first of all rooted in the modification generating func-
tions from task assignment planning. In addition, we provide in a first step of “active” temporal plan-
ning (see Sec. 3.5.5) the configuration with an explorative way of narrowing time intervals for flawed plan
steps.

Definition 3.25 (Add Temporal Constraint). For a given temporal plan P = 〈TE,≺,VC,TC〉, flaw f, and
temporal domain model D, the modification generating function f mod

AddTempConstr proposes to include an ap-
propriate temporal constraint as follows: Let te ∈ TE∩comp(f) be a flawed plan step and let all assignments
to startte that are consistent with the constraints in TC lie in the interval [a,b]. Let us furthermore assume
that the generating function has defined an arbitrary real number 0 < δ < ∞. The function then returns

f mod
AddTempConstr(P,f,D)⊇

{
{〈a≤ startte ≤ a+δ , /0〉,〈a+δ ≤ startte < ∞, /0〉} if b = ∞

{〈a≤ startte ≤ b−a
2 , /0〉,〈 b−a

2 ≤ startte ≤ b, /0〉} else

If the start time point is assigned a single value, that means startte ∈ [a,a], f mod
AddTempConstr returns no plan

modification for f. •

The strategy that is followed by this modification generator is apparently that of systematically reducing the
assignment range for the starting time point of plan steps (given that the configuration provides the means
for propagating this decision, start and end point are constrained by the task duration). If a task with definite
time bounds is flawed, the function induces a binary decision in terms of probing the lower and upper half
of the interval, respectively. The second case, a missing upper bound, leads to a guess (in this version of
the configuration a completely uninformed one) for a suitable split point. The rationale for publishing an
unbound alternative modification is that the completeness of refinement options has to be maintained: if the
remaining plan generation process does not support the corresponding operator to start within δ time, the
configuration still has refinement options available.

The temporal constraints adding function is a sound plan modification generator, because the flaw is ad-
dressed implicitly and the component balance is positive. Furthermore, it is also obviously a refinement,
because of the convex relation that is imposed by the STP constraint intervals. Please also note that we may
assume the modification application function (see app operator in Def. 2.20) to treat the temporal constraints
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transparently. Concerning future developments, in correspondence to our comments on the temporal flaw
detectors, the modification generating functions will deploy more sophisticated temporal calculations and
informed heuristics in order to balance the time slack, reduce the makespan, and the like. In particular,
the proper choice of the δ parameter, which cuts finite sub-intervals from unrestricted ones, has a large
implications on the efficiency of the procedure.

Triggering Function αTTAP

The triggering function for temporal planning employs αTAP of the configuration of task assignment planning
for dealing with the task orderings and parameter assignments. The newly introduced generator for adding
temporal constraints is solely triggered by the temporal variable binding deficiency.

αTTAP(Fx) =


MAddTempConstr for x = OpenTmpBind
/0 for x = TempInconsistency
αTAP(Fx) otherwise

A temporal inconsistency cannot be resolved by a plan modification and is therefore not addressed by any
modification generating function. It is a critical flaw and induces a plan discard (cf. Def. 2.35).

Inference Functions – InfTTAP

A system configuration implementation places similar requirements on temporal constraints as it does on the
variable constraints: one constraint reasoning subsystem should make all deduced relationships explicitly
available in the constraint sets. Since this section presents temporal planning from a conceptual perspective,
we consider such an inference function as optional and omit it for this presentation. We note, however, that it
would be a sound inference function in any case, because it returns proper plan modifications with a positive
balance of elementary additions.

Furthermore, inference functions are an integral part of the temporal planning system configuration, because
they are the semantic connection between the formal framework core and the temporal reasoning layer. The
following inference functions realize this by deducing temporal constraints that are implied by the ordering
relation.

Definition 3.26 (Temporal Variable Introduction). For a given temporal plan P= 〈TE,≺,VC,TC〉 and plan-
ning problem π , the inference function f in f

IntroTempVar adds a unary temporal constraint to plan P for each
plan step that is apparently not yet represented in TC.

〈{0≤ startte < ∞, startte +dmin
t ≤ endte ≤ startte +dmax

t }, /0〉 ∈ f in f
IntroTempVar(P,π) if and only if te ∈ TE is

an instance of task schema t and startte and endte do not occur in TC. •

The rationale for the first inference is to introduce newly added plan steps to the temporal reasoning system.
It allows to deploy time-unaware configuration components to safely manage the TE set.

Definition 3.27 (Temporal Distance Introduction). For a given temporal plan P= 〈TE,≺,VC,TC〉 and plan-
ning problem π , the inference function f in f

IntroTempDist adds a binary temporal constraint to plan P if the
ordering constraints contain a precedence that is not implied by TC.

Given two task expressions tei = li : ti(vi) and te j = l j : t j(v j) ∈ TE with tei ≺ te j in the transitive closure of
≺, then 〈{endmax

ti ≤ startt j}, /0〉 ∈ f in f
IntroTempDist(P,π) if and only if endmax

ti ≤ startt j is not satisfied by TC. •

The introduction of distance constraints corresponds to the previous inference such that components may
focus on the qualitative abstract temporal model and manipulate the ordering constraints accordingly, while
at the same time these manipulations are synchronized with the quantitative temporal representation. The
following inference provides the inverse functionality, that means, transfers quantitative results to the quali-
tative level.
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Definition 3.28 (Ordering Constraint Introduction). For a given temporal plan P = 〈TE,≺,VC,TC〉 and
planning problem π , the inference function f in f

IntroOrdering adds an ordering constraint to plan P if the tem-
poral constraints support a precedence that is not implied by ≺.

Given two task expressions tei = li : ti(vi) and te j = l j : t j(v j) ∈ TE for which TC is consistent with the
inequation endmax

ti ≤ startt j , then 〈{tei ≺ te j}, /0〉 ∈ f in f
IntroOrdering(P,π) if and only if tei ≺ te j 6∈≺∗, the

transitive closure of ≺. •

When we say that the inference mechanism “synchronizes” the qualitative and quantitative temporal view,
we are taking into account that all inference functions are called repeatedly until the inferential closure is
reached. That means that after the first phase of the generic refinement planning algorithm (Alg. 2.2, lines 4-
8) all implicit interdependencies between≺ and TC are made explicit (cf. management modules in O-PLAN
that are dedicated to the management of temporal information and feedback into corresponding plan data
structures [76]).

All three inference functions are trivially sound, because they merely add constraints to the respective sets,
thereby conservatively reducing the solution candidates.

Other inferences may realize the notion of precision by co-designating temporal variables for which the
distance drops below a certain threshold ε > 0 that characterizes the minimal temporal quantity that is ob-
servable in the execution environment. As an example, consider our hardware installation project above for
which it would not make sense to distinguish durations that are shorter than five minutes.

Summary of the TTAP Configuration

With the above function definitions, the temporal planning configuration specified as follows:

CTTAP = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask, f det
TempInconsistency, f det

OpenTmpBind}

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr, f mod
AddTempConstr},

{ f in f
IntroTempVar, f in f

IntroTempDist, f in f
IntroOrdering},

Str〉

Theorem 3.9 (Properness of CTTAP). CTTAP is a proper system configuration in the sense of Def. 3.2.

Proof. Given that CTAP is proper according to Theorem 3.1, the following arguments hold.

DetTTAP is a complete set of sound detection functions, because the included set DetTAP is proven to be
complete and the additional detection functions directly correspond to the solution criteria concerning the
temporal meta-constraint system.

ModTTAP is a semi-complete set of sound modification generating functions, because the addition of tem-
poral constraints is a sound generator that satisfies any proposed flaw if the corresponding refinement is
applicable and because it extends ModTAP, which is semi-complete as well.

InfTTAP has been shown above to be a set of sound inference functions.

It can also be easily seen that ModTTAP corresponds to DetTTAP: every modification generator is assigned a
detection function in αTTAP.

Theorem 3.10 (CTTAP is Modification-Complete). CTTAP is modification-complete according to Def. 3.3.

Proof. Given that the included CTAP configuration is modification complete (Theorem 3.2) and that the only
un-processed flaw is a critical one (temporal inconsistency), the proposition holds.
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3.3.3 Resource Planning – CRTAP

The system configuration for resource planning is an extension of task assignment planning that allows
for reasoning about objects or substances that induce constraints on the actions that use them because of
their cost or available quantity; we call these entities resources. As we have argued in the introductory
chapter (Sec. 1.2), the notion of consumable substances like energy or money as well as the concept of
anonymous objects like tools or machines is an integral part of real-world planning applications. Reason-
ing about resources has a long tradition and hence a large variety of representation and reasoning mecha-
nisms is available today. This framework focuses on creating a unifying basis for resource reasoning and
causal inference and therefore formulates a constructive approach to profile management of discrete re-
sources.

We build resource reasoning directly on the TAP configuration in order to design it as flexible as possible.
In particular, our intention is to realize the resource treatment in a way that is analogous to the integration
of temporal information in the previous configuration: a layer on top of the causal plan that uses it as an
abstract view on the resource plan. The production and consumption of resources are therefore understood
as processes that cannot be analyzed below the modelling horizon as it is defined by the primitive operators.
Our arguments are basically the same as for temporal planning before (Sec. 3.3.2): In situations of parallel
action execution, the precise interleavement of elementary operations is intentionally not deducible and
therefore two actions that operate on the same resource necessarily have to be ordered sequentially (cf.
Fig. 3.13). We also want to keep the modelling of access primitives as simple as possible: Instead of
providing sets of directives for explicitly consuming, producing, and allocating resources, we will employ a
natural representation that uses term updates and our sort system.

Our rationale for defining resource planning as a more “passive” configuration is to provide a basic configu-
ration that is able to verify the resource demands of a plan, to indicate inconsistent allocations accordingly,
and finally to complete any partial assignment in a systematic way. In this view, the resource reasoning
subsystem is keeping track of the worst case estimate, that is to say, it is profiling the upper bound regard-
ing resource utilization. It is thereby guaranteeing that any solution is feasible with respect to the given
resource availability. Please note that the actual interpretation of allocation information, its propagation and
computation techniques, is not in the focus of this section. Our system design allows for the deployment of
standard reasoning techniques and algorithms and we will give reference to them where applicable. CRTAP
is thereby the foundation for future developments that will implement resource management more actively
in the canon of configurations, and in particular in a more optimization-oriented way; the discussion section
details some of them.

Domain Model Specifics

Let us begin with the basic definitions of the resources per se. We support two kinds of resources, namely
symbolic and numerical ones. The latter correspond to the usual notion of quantity, for example, the nu-
merical resources of available construction material in tons, fuel in gallons, etc. A numerical resource is
typically associated with the concept of a level, the currently available quantity, and the capacity, its maxi-
mal level. An example is the electric energy provided by a battery: its capacity is the maximal battery charge
and its level drops according to the electric power consumption. We may assume that the lower bound for
every resource level is 0, that means, the resource becomes unavailable, negative levels are therefore not
permitted. For practical considerations we furthermore distinguish consumable and non-consumable nu-
merical resources, with which we refer to resources that are consumed or “borrowed” by the processes that
use them, respectively. A numerical resource is accessed via querying and updating a specific flexible term;
increasing and decreasing its value corresponds to consuming and producing quantities, respectively. Since
the formal framework does not perform numeric calculations but rather deals with symbolic (in-) equalities,
the restriction to finite symbol sets for the representation of a finite number of “tokens” in the continuous
space of real numbers is feasible.

The difference between symbolic resources and regular planning objects is a subtle one: From the point of
view of the formal framework, both concepts coincide, but from the conceptual knowledge representation
perspective, the identity of a resource entity is explicitly not of interest. This allows for efficient reasoning
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Figure 3.14: The sort hierarchy for resource planning: The relationship between symbolic, consumable nu-
merical, and non-consumable numerical resources. The dotted area represents an example for
resource definitions in the disaster relief mission domain.

mechanisms that analyze allocation profiles and identify bottlenecks, potential and definite over-allocations,
etc., rather than dealing with equations and in-equations in constraint sets. The allocation of symbolic
resources is represented implicitly by task and operator parameters, which signal the usage of objects of the
given sort. Note that we cannot “create” or “destroy” objects, therefore symbolic resources are necessarily
non-consumable.

The logical language L = 〈Z ,≤,Rr,R f ,Fr,F f ,V ,Tp,Tc,E 〉 for a resource planning configuration
CRTAP reflects the resource conceptualization in its sort system and function definitions. Z contains six
designated sort symbols that are in the following sub-sort relationships (Fig. 3.14): Symbolic≤ Resource,
Numerical ≤ Resource, Numerical ≤ Number, Consumable ≤ Numerical, and NonConsumable ≤
Numerical. We may assume that Cr provides a suitable set of natural or real number constants for pop-
ulating the numerical sorts Number and Numerical. The consumable numerical resources are represented
by the flexible functions that are of the corresponding sort Consumable, that means Fconsumable = { f | f ∈
F f ∩FZ1...Zn,Z′ with Z′ ≤ Consumable}. The figure shows a function supplies_s : Loc→ Sand which
is intended to model the sand supplies that are available at a given location. Sand is an example for a
consumable numerical resource, which is a flexible function that describes the amount of sand in tons.
supplies_sb : Loc→ Sandbag is the corresponding function for modelling sandbags that can be deployed
for dyke fortifications. The non-consumable numerical resources FnonConsumable are defined analogously via
the rigid function symbols. The presented example shows the function avail_ep : Loc→ ElectricPower,
which associates an electric power level in volt-ampere with a given location. The model uses a non-
consumable resource, because the electric energy is on a certain level of abstraction an energy source that is
shared by consumer devices, which do however not drain the generators like they would do batteries. The
implied constraint is that at every moment in time a certain amount of electric power is available that must
not be exceeded.

Although the distinction in rigid and flexible functions subsumes in some sense the resource definitions in
the sort hierarchy, we prefer this rather verbose modelling style for its clarity. In this way, all resources are
explicitly declared in the concept taxonomy and at the same time defined in a semantically safe way. The
domain model furthermore includes rigid functions for numerical calculations like addition, subtraction, and
multiplication, as well as some basic functions like maximum and minimum. Fig. 3.14 furthermore shows
numerical data types that are not regarded as resources, in the example this is a rigid function that defines
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the length of objects in meters.

Please note that we model inequations in operator schemata in a not very obvious way, namely x≡max(x,y)
instead of x≥ y, and the inequality relation symbols are consequently not included in the resource planning
language. The rationale is simply to maintain a view on resource calculations that directly matches the
causal view of the formal framework: an equation query is naturally causally linked to an update and can
therefore be directly interpreted as the symbolic outcome of the update (no numerical computations), which
is recorded by equations in the variable constraint set, if appropriate. It is the duty of a (possibly external)
term reasoning facility to verify under which assumptions the term interpretations are consistent; if they
are not, it has to announce a flaw. Introducing inequations however implied that causal reasoning had to
deal with threat scenarios involving ≥ and ≤ statements and, consequently, the corresponding numerical
comparisons had to be integrated into the variable constraints. As a consequence of the equality usage, term
queries and corresponding updates can be examined in a causality-aware configuration such that resource
production and consumption activities are linked on the causal level as well. As a result, the planning system
has a coherent view on some of the scheduling aspects of the problem.

Given a resource-extended logical language L , the domain model representation for the RTAP system
configuration is based on a task assignment planning model, that means, DRTAP = 〈M , /0,T〉. The op-
erator schema definitions in T basically have the structure that we introduced in the formal framework
section (Def. 2.4), that means o(v) = 〈prec(o(v)),eff(o(v))〉. The resource planning specifics are the fol-
lowing:

• v = v1, . . . ,vn is the list of operator parameters. Any parameter vi with 1 ≤ i ≤ n of sort Zi with
Zi ≤ Symbolic denotes an allocation of resource type Zi, that means, an exclusive employment of a
domain object c ∈ DZi .

• prec(o(v)) contains queries to numerical resource levels. Every occurrence of a non-consumable term
is interpreted as an allocation of the term’s sort with the quantity given by the term’s value in the state
in which operator o is to be executed.

• eff(o(v)) = e1 . . .em is a non-empty, finite sequence of elementary term-update operations. It contains
monotonic manipulations of consumable numerical resources, that means, term updates that are either
necessarily increasing or decreasing the value for all operator instances.

The last structural restriction is not essential for this configuration, it is however a necessary simplifica-
tion for our prototypical resource reasoning approach to efficiently deduce resource bounds from the op-
erator specification. It allows to classify operators into producing and consuming activities for a given
resource. Please note that according to operator consistency requirements (Def. 2.6) the effects are re-
stricted to one update per term and that the outcome of the elementary operations does not depend on
their ordering. The latter implies that operators cannot define interdependent resource manipulation ef-
fects.

Regarding the temporal dimension, as it has been stated above, no allocation or update can be located at a
specific point in time that is below the operator resolution. That means, that the complete state transition
has to be protected against concurrent resource access and, consequently, two “parallel” operators have to
share their resources during their complete execution interval. The temporal model used in this section is
the qualitative ordering relation, the consequences will however propagate into the temporal extensions of
the CRTAP system configuration.

We show an example for a resource planning domain model in the following operator definitions of the
disaster relief mission domain. Let us assume that the corresponding language introduced the variables u, l,
and d of sort Unit, Loc, and Dyke, respectively.

MobilizeUnite(u) =〈>, /0〉
ProvideElectricity(u, l) =〈>, /0〉

InstallIllumination(u, l) =〈≡ (avail_ep(l),max(avail_ep(l),20)), /0〉
FillSandbags(u, l,n) =〈>, :=supplies_s(supplies_s(l)−n)

:=supplies_sb(supplies_sb+(n ·60))〉
DistributeSandbags(u,d) =〈>, :=supplies_sb(supplies_sb(d)− (length(d) ·100))〉
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The intended meaning of these operator definitions is that all activities require the presence of a relief organi-
zation unit, which implies the allocation of the corresponding vehicle and personnel. ProvideElectricity
is performed by a unit that is equipped with a 20kVA generator; the electric power is thereby not pro-
duced in order to be consumed (a non-consumable resource) but rather relocated in order to be shared
by InstallIllumination actions. The latter require 20kVA for providing daylight-like conditions for
a working area; the implicitly allocated unit operates the illumination system. Concerning the dyke forti-
fications, we have to distribute about 100 sandbags per meter length of the damaged wall segment. The
corresponding supplies are made by filling sand into fabric bags; the model specifies that it takes about 1t of
sand for producing 60 sandbags.

We want to emphasize two particularities of our modelling approach: First, allocating a non-consumable
resource is usually represented by a combination of a resource consumption and a subsequent production. It
is however impossible to access the intermediate (sub-atomic) states below the operator level and therefore
the allocation cannot be represented in our framework in this way. Our solution is shown in the example
operator InstallIllumination, that means, the term query implements a “lock” on the required electric
energy. The allocation is of course only interpretable by the reasoning system of the resource planning
configuration, because a purely causal view on the plan will only perceive a requirement of 20kVA that does
not imply any state change. The resource reasoning system can however deduce from the sort hierarchy that
electric power is a non-consumable resource and therefore every identified term evaluation has to be treated
as concurrently accessed quantities, analogously to symbolic resources.

The second unique aspect of our approach is the use of the sort hierarchy for resource reasoning. Allocat-
ing a certain quantity of a given resource implicitly allocates the same quantity of the super-sort resource,
for example, deploying a truck implies deploying a unit (cf. Fig. 3.14). The more interesting inference,
however, is to deduce potential allocations of concrete resources from the allocation of abstract ones. If
the FillSandbags activity uses one unit, it potentially uses one truck or one boat, unless variable typing
constraints rule out one option. We will see this mechanism in an example below.

Given the above components for the specification of resources and corresponding manipulation methods,
consistency of such a resource-aware model has to be considered carefully according to the following defi-
nition:

Definition 3.29 (Consistency of Resource Planning Domain Models). A resource planning domain model
DRTAP = 〈M , /0,T〉 over a given (resource) language L is called consistent if and only if the following
conditions hold:

1. The included domain model 〈M ,∆,T〉 is consistent (see Def. 2.8).

2. Neither Consumable≤ NonConsumable nor Consumable≤ NonConsumable and neither Symbolic≤
Numerical nor Consumable≤ Symbolic hold in the transitive closure of the sub-sort relation ≤ .

3. All operators that access consumable resources have satisfiable preconditions and effects such that
productions do not necessarily over-produce the resource and consumptions do not over-consume,
respectively.

•

For representing the dynamics of consumable resources in a plan, we deploy a constraint-based approach
that parallels our temporal constraint handling and therefore we discuss it only briefly in this section (see
p. 112). A resource plan is the structure P = 〈TE,≺,VC,RC〉, which extends the task assignment plan
specification by a set RC of resource constraints. The underlying constraint system (z,d,c) consists of
variables z that represent the resource levels in the states before and after the operator transitions, namely
inr

te for the input level of resource r at the plan step te and outrte for the corresponding output level. The
set z also contains a third type of variables, the allocation levels for non-consumable resources allocr

te . The
domain assignment function for the variables is given by d : z→ IR+

0 , which also includes the symbol ∞ for
denoting an unlimited amount. The set c contains unary and binary constraints that describe the possible
intervals for the value assignments to the level variables. For each resource r of sort Z, Z ≤ Consumable,
that occurs in a task expression te in TE, c contains two constraints such that the equations imin ≤ inr

te ≤ imax
and omin ≤ outrte ≤ omax hold. Since the set of basic mathematical functions is known in advance and the
resource manipulating terms are restricted to a monotonic composition, it can be directly deduced from the
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operator schema’s effect structure whether it consumes or produces a resource. If te utilizes r at a rate
of nr

te ∈ [minr
te ,maxr

te ] then the binary constraints relate input and output variables as follows: minr
te ≤

outrte − inr
te ≤ maxr

te . Although the RTAP configuration does not directly support rate ranges in its domain
models, that means, minr

te = maxr
te for all operators, we still use these constructs in the resource constraint

set for later configurations. We will see in the hierarchical extension of this configuration that ranges of
consumption and production may occur in effect abstraction. We have to note, however, that a complete
inference on these presented resource constraints in the sense of optimization is significantly more complex
than in the case of temporal information because the propagation has to take into account the possibility of
adding resource production steps. For an efficient solution to this problem, we refer to a technique called
reservoir balance propagation, which has been developed in [162] and which we will adopt for future
resource planning configurations. Our resource representation corresponds to the therein given Resource
Temporal Networks (RTN), and in particular we can include our temporal model that we have introduced
before (an STN is the time model of an RTN). However, for the time being, our resource constraints are only
used for documenting the resource commitments of plan steps and are thereby the basis for deducing upper
and lower bounds of resource utilization in the fashion of optimistic and pessimistic resource profiles that
will be described in the following section.

A resource profile for a resource r in a resource plan P = 〈TE,≺,VC,RC〉 is given by a set RC′ = RC of
resource constraints and a set ≺′=≺ of ordering constraints. The optimistic profile for r over P is obtained
from the neutral profile as follows: Let te1. . . ten be a sequence of all task expressions in TE that utilize
r such that for increasing sequence position the associated utilization maxima decrease, that means, for
1 ≤ i < j ≤ n the equation maxr

tei
≥ maxr

te j
holds. Starting from i = 1, we add tei ≺ te j to ≺′ for every

1 ≤ i < j ≤ n if te j ≺ tei is not in ≺. The result is an ordering relation ≺′ in which the most producing
plan steps are moved to the front, if possible. We note that it is actually only relevant to prefer producing
to consuming steps. After that, we build a second task sequence te′1 . . . te′n that is consistent with ≺′ and
that contains all task expressions in TE that utilize r. For 1 ≤ i < n we add to RC′ the resource constraint
outr

te′i
= inr

te′i+1
and for every 1 ≤ k ≤ n nr

te′k
= maxr

tek′ . Now we are able to propagate the production and
consumption of the resource along the respective plan steps, which produces the upper and lower bounds of
the total resource manipulation.

The pessimistic profile is calculated in exactly the same way, except that the first sequence of tasks is ordered
according to an increasing minimal utilization, that means for 1 ≤ i < j ≤ n we have minr

tei
≤ minr

te j
, and

with the second sequence we associate for 1 ≤ k ≤ n the minimal rates nr
te′k

= minr
tek′ . In this profile, the

most consuming tasks are put in front, followed by the production steps.

Both profiles over-consume or over-produce a resource if the updated constraint sets RC′ become inconsis-
tent. We may however want to be more specific in order to identify the first point of failure for bottleneck
analysis. To this end, we can iterate the propagation procedure for the profiles along the production and con-
sumption episodes. The plan necessarily over-consumes the resource if the first inconsistency occurs in a
consumption episode of the optimistic profile and it necessarily over-produces it, if the first failure occurs in
a production episode of the pessimistic profile. Please take into account that a plan may both over-consume
and -produce the same resource multiple times.

The non-consumable and symbolic resources are managed in a very simple way: Symbolic resources of
sort Zr are implicitly represented via the variable constraints VC and the ordering relation ≺. We deduce
an optimistic lower bound that is equal to the number of necessarily distinct instances of the given sort
and a pessimistic upper bound that is given by the total number of objects in the domain of Zr minus the
co-designated identities in VC. Regarding the numerical non-consumable resources, we introduce variables
allocr

te in RC with which we model profiles that allocate at rates that depend on the range of other resources
in RC. We then infer from the partial ordering relation all possible time slices and with that, we can determine
the upper and lower bounds for parallel allocations. These reasoning tasks are considerably easier than those
for consumable resources and rely on standard algorithms, for instance, the calculation of minimal critical
sets [52, 164].

Concerning the consistency of resource plans, the RTAP configuration completely relies on the included
TAP plan.
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Figure 3.15: An initial plan of a resource planning problem in the disaster relief mission domain.

Definition 3.30 (Consistency of Resource Plans). A resource plan P = 〈TE,≺,VC,RC〉 over a given lan-
guage L and domain model DRTAP is called consistent if and only if the following conditions hold:

1. The included partial plan P = 〈TE,≺,VC,CL〉 with CL = /0 is consistent over DRTAP (see Def. 2.12).

2. RC is consistent, that means, there exists an assignment of domain values to resource variables that
satisfies all equations induced by RC.

•

Regarding the consistency condition for the resource constraint set, please recall that we do not automatically
introduce binary constraints between consecutive plan steps because later extensions of this configuration
will be able to add production steps. This non-monotonic constraint manipulations would make an over-
consuming and hence inconsistent resource demand feasible.

Problems and Solutions

RTAP problems are defined as task assignment planning problems that have in addition an initial state
for specifying the available resource quantities and a goal state description for specifying designated re-
source levels: πRTAP = 〈DRTAP,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,RCinit〉〉. In terms of the null plan, we employ
a set-up task for sinit that updates all resource terms, including the non-consumable resources (but is other-
wise consistent, cf. discussion in Sec. 2.6.1), and a goal state task with the appropriate term queries in its
precondition according to sgoal . In addition to the regular resource specifications in the action schemata,
the resource constraints that are given in the initial resource plan (RCinit ) may impose further restrictions
that are problem-specific. An example for such a restriction is a balanced production of two activities,
in which an equation between the output levels guarantees that both produce the same amount of a given
substance.

Fig. 3.15 shows an example specification for a resource planning problem, which we adapted from the task
assignment example (Fig. 3.4). The corresponding domain model has been sketched above. The six activities
are not ordered, all parameters for the relief organization units are unbound, and the operation area is set to
a specific damaged segment of a dyke. Initially, there are 1.000t of sand available at the dyke, no sandbags,
and a mobile 20kVA generator; the relief organization has deployed two units in the area. The lower part of
the figure depicts the pessimistic usage profiles for the four resources over an imaginary time line. Recall
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that this worst-case scenario assumes for every resource that any consumption occurs as early and extensive
as possible while any production occurs as late and sparse possible [77]. The resource reasoning system in
our prototypical configuration implementation employs this profile calculation in order to identify potential
resource over-consumptions and -allocations. The blue Unit profile, for example, assumes that all six units
to which the plan refers are allocated at the beginning of plan execution. In this case, the plan also represents
courses of action that require six different units at the same time; this resource demand exceeds the available
quantity by four. The profile for the other sorts is not depicted in the figure, but we note that via the sort
hierarchy, the Boat resource becomes potentially over-allocated as well, because four units may turn out to
be co-typed into this sort for which no objects are defined. Regarding the sandbag supplies, the distribution
action consumes 50.000 sandbags for stabilizing the dyke, while a corresponding production step may occur
afterwards. Please note that the profiles do not necessarily represent a valid state of the world because we
decouple resource manipulations from the actual action instance by computing them in isolation. In this
view, they are rather a collection of disjunctive, negative events. If the pessimistic profiles do however not
indicate a resource over-consumption, then every ground serialization the plan will necessarily comply with
the resource restrictions. It is easy to see that this is a correct criterion that does not produce false positive
classifications.

During search, the system keeps also track of the antagonistic profiles, the optimistic views on resource
utilizations. These views hypothesize, for example, that all deployed units are the same instances (the
special force unit is at the same time a truck vehicle), that the sandbags are provided at the beginning
of the execution, and that the sandbags are distributed at the very end. Whenever a resource becomes
unavailable according to the optimistic profile, over-consumption or over-allocation is inevitable and search
has to backtrack if there is no way to produce the resource. While the literature typically focuses only on this
best-case view for determining necessary cuts in the search space, we use both optimistic and pessimistic
profiles as heuristics for describing the lower and upper bound of resource usage in order to increase the
predictive power of the estimate (cf. discussion in [68]) .

Given a resource planning problem πRTAP = 〈DRTAP,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,RCinit〉〉, the resource
plan P= 〈TE,≺,VC,RC〉 is a solution to πRTAP if and only if the following conditions hold:

1. The included task assignment plan P′ = 〈TE,≺,VC〉 is a solution to the included TAP problem π ′TAP =
〈DTAP,sε ,>,〈TEinit ,≺init ,VCinit〉〉. Domain model DTAP is thereby the corresponding task assignment
model without resource queries and updates in the operator schema definitions.

2. All pessimistic profiles for the non-consumable resources over P are consistent. This in particular
implies that RC is a consistent resource constraint network, that means, there exists an assignment of
domain values to resource variables that satisfies all equations induced by RC.

3. RC is a refinement of RCinit , that means, for all unary constraints a≤ x≤ b that occur in RCinit there is
a constraint a′ ≤ x≤ b′ in RC with a≤ a′ ≤ b′ ≤ b.

4. RC is consistent with VC such that every constant assignment in VC is consistent with the equations in
RC.

5. RC is consistent with ≺ such that the constraints correspond with the partial order.

6. RC is complete in the sense that for every te ∈ TE that accesses a resource r, RC contains the con-
straints a≤ inr

te ≤ b and c≤ outrte ≤ d for some a,c≥ 0 and b,d < ∞.

The first two arguments refer the symbolic and non-consumable resources: The VC handling of task assign-
ment planning configuration will eventually assign a constant value to each task parameter and therefore
it will necessarily comply with the capacity of symbolic resources. The problem with non-consumable re-
sources is the fact that the underlying causal view does not reflect parallel action execution, the pessimistic
resource utilization will therefore verify whether the worst-case scenario, that is to say, a maximal parallel
execution over-allocates the resource or not.

Conditions two and three confirm that the resource reasoning layer has come to a positive conclusion and
that the resulting constraint network has been obtained from the initial one.

The last three conditions ensure that our refinement mechanism has been properly synchronized with the
resource reasoning system. The parameter assignments have to be supported by the resource restrictions and
vice versa, the parallel allocation of non-consumable, respectively symbolic resources has to be supported
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Install Illumination
u3: THW-Unit
l3: Location

Provide Electricity
u2: THW-Unit
l2: Location

Mobilize Unit
u1: THW-Unit

Mobilize Unit
u4: THW-Unit

Fill Sandbags
u5: THW-Unit
l5: Location

Distribute Sandbags
u6: THW-Unit
l6: Location

VC = { u1 =̇u2,u2 =̇u3,u2 ∈̇Taskforce Electricity (FGr E),u1 ˙"=u4,

u4 =̇u5,u5 ∈̇Truck,u5 =̇u6,

u1 =̇FGr E Neuwied,u4 =̇9t Truck, FGr BrB, 2.TZ Dresden
l2 =̇Dyke Segment 5, l2 =̇ l3, l3 =̇ l5, l5 =̇ l6}

|Unit|≡0

avail_ep(l2)≡20
supplies_s(l2)≡1.000

avail_ep(l2)≡0

supplies_s(l2)≡160

supplies_sb(l2)≡50.000

supplies_sb(l2)≡0
|Unit|≡2

Figure 3.16: A solution to the resource planning example problem of Fig. 3.15.

by the partial order, and finally the resource constraints have to reflect all resources and involved manipu-
lation plan steps. Regarding the last condition, we also want the solution to be definite in the sense that all
upper bounds are at least finite (assuming that the constraint propagation will reduce the upper bound to a
reasonable limit).

There is a subtle difference between these solution criteria and that of temporal planning: While both con-
figurations are organized such that the task assignment plan (and eventually a causally structured plan) is
one “layer” for representing and reasoning about actions and the constraint systems operate on a second,
more specific layer, resource manipulations are however explicitly represented in the operator schemata. As
a consequence, we have to show that the above definition agrees with the solution criteria in Def. 2.17, in
particular with respect to the numerical resources. However, as we have argued above, the computation of
resource updates and term evaluations can be performed on a purely symbolic level. That means, when we
update a numerical term we do not calculate a numerical value on the semantic level but delegate the actual
calculation to an external “computation oracle” that decides on later term queries. In this way, all numbers
are represented by the terms that create them (for example, “the term that is the result of adding constants
a and b”) except for the few constants that we need for defining operator schemata and problem instances.
The consequence of this approach is that the resource constraints act as an oracle witness for the underlying
causal view of updates and queries and therefore our solution criteria agree.

Before we define the refinement planning function sets, let us examine a solution to the previous problem
as it is given in Fig. 3.16. The depicted plan realizes two threads of activity, namely one concerned with
installing the illumination and on dealing with fortifying the dyke structure. By assigning co-designations
and non-codesignations to the parameters, the plan allocates only two instances of the symbolic resource
Unit in parallel, which matches its availability. The additional ordering constraints, and in particular
FillSandbags ≺ DistributeSandbags, ensure that the required sandbags have been prepared before
they are build into the dyke. Please note that the causal dependency between providing an electricity gen-
erator and using that electricity at the same place is not reflected in the resource model; the same holds for
mobilizing the appropriate unit with the required competences (in the example problem, this knowledge is
reflected only implicitly in the co-typing constraints).
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Detection Functions – DetRTAP

The above solution criteria for the resource planning configuration can be divided into three categories:
First, the included task assignment plan must be a solution to the corresponding sub-problem, second, the
solution must be a refinement of the problem, and third, the resource reasoning extensions must constitute a
solution to the “attached” resource problem. Concerning the first category, DetRTAP will contain all detec-
tion functions from the TAP configuration. The second category is implicitly addressed by our refinement
generators being sound; these will be defined below. Finally, for the third category we propose the following
two flaw detection functions.

The most important flaw is also a critical one; it announces plans for which the resource constraint network
has become faulty. It plays its major role in situations in which task parameters occur in resource terms and
a variable constraint implies a restriction on the associated resource profile.

Definition 3.31 (Resource Inconsistency). For a given resource plan P = 〈TE,≺,VC,RC〉 and problem π ,
the flaw detection function f det

ResInconsistency indicates that the resource constraints in RC have become in-
consistent.

Given that RC is inconsistent, let {x1, . . . ,xn} be those resource variables in RC for which no value assignment
can be found, that is to say, for which a unary constraint implies an empty interval or which are involved
in a binary constraint that evaluates to an empty interval. Then f det

ResInconsistency(P,π) is the set of task
expressions {te1, . . . , tem} ⊆ TE such that for any 1≤ i≤ n there is a 1≤ j ≤ m with xi being inr

te j
or outrte j

for a resource r. If no such association can be found, the set includes teinit and tegoal instead. •

As no solution can be obtained from a collapsed constraint set, this detection function is sound.

The second flaw corresponds to the causal interactions, namely a threat between resource utilizations. We
basically distinguish two classes of threats, one that emerges due to a potential concurrent access to the same
resource and one that indicates if resource bounds are exceeded. The latter may be either over-consumptions
or over-productions.

Definition 3.32 (Resource Threat). For a given resource plan P = 〈TE,≺,VC,RC〉 and problem π , the flaw
detection function f det

ResThreat announces critical sets of plan steps that over-allocate a non-consumable or
symbolic resource, plan steps on critical paths that over-consume or over-produce a consumable resource,
and the set of plan steps that access the same resource concurrently.

f det
ResThreat(P,π) contains the set of task expressions t̂e = {te1, . . . , ten} ⊆ TE if one of the following condi-

tions holds:

1. For every 1 ≤ i, j ≤ n the transitive closure of the plan step ordering does not contain tei ≺ te j. Fur-
thermore, there is a non-consumable resource r such that for every 1≤ i≤ n RC contains a constraint
lbi ≤ allocr

tei
≤ ubi and for this resource ∑1≤i≤n ubi > outrteinit

holds. This is the maximal set of plan
steps for this resource, so the detection function returns no set t̂e′∩ t̂e 6= /0. f det

ResThreat issues one flaw
for each resource and segment in the partial order in which the over-allocation occurs.

2. For every 1≤ i, j ≤ n the transitive closure of the plan step ordering does not contain tei ≺ te j. Let r̂
be the set of parameters of all plan steps in t̂e that are of sort r ≤ Symbolic. Let furthermore r̂∗ be
obtained from r̂ by iteratively removing parameters r for which r̂ contains a second parameter r′ 6= r
such that r =̇r′ holds in the inferential closure of VC. We assume that the detection function returns
the maximal set of plan steps for this resource and no other t̂e′∩ t̂e 6= /0. f det

ResThreat issues one flaw for
each potentially over-allocated resource.

3. t̂e is the sequence of plan steps of a profile that over-consumes or -produces a resource. f det
ResThreat

issues one flaw for each such resource.

•

Please note that regarding the first and second condition, the detection function issues one flaw per over-
allocation episode and the return sets for different resources may of course overlap. It is also easy to see that
the detection function directly implements solution criterion 2 and hence is sound.
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Modification Generating Functions – ModRTAP

The refinement options for resource planning are very similar to temporal planning. While the manage-
ment of the underlying causal structures is under the regime of the modification generating functions from
task assignment planning we provide the configuration now with manipulations of the resource constraint
set.

Definition 3.33 (Add Resource Constraint). For a given resource plan P = 〈TE,≺,VC,RC〉, flaw f, and
resource domain model D, the modification generating function f mod

AddResConstr proposes to include a resource
constraint as follows: Let te ∈ TE∩comp(f) be a flawed plan step and let lb≤ x≤ ub be a resource variable
in RC that is associated with te.12 If the flaw does not contain plan steps we may alternatively check for a
variable v ∈ V that is a component of the flaw and which is represented by the resource variable x.

Let us assume that the generating function has defined an arbitrary real number 0 < δ < ∞. The function
then returns

f mod
AddResConstr(P,f,D)⊇


{ } if lb = ub
{〈lb≤ x≤ lb+δ , /0〉,〈x = lb+δ , /0〉,〈lb+δ ≤ x < ∞, /0〉} if ub = ∞

{〈lb≤ x≤ ub−lb
2 , /0〉,〈x = ub−lb

2 , /0〉,〈 ub−lb
2 ≤ x≤ ub, /0〉} else

•

The systematic reduction of the resource assignments parallels the corresponding modification generating
function of the TTAP configuration, given that the app operator (Def. 2.20) treats the resource constraints
transparently. It is also a sound plan modification function for exactly the same reasons: we conservatively
extend the constraint sets while we address the argument flaw. Please note that when a parameter is asked
to be assigned a resource value, we probe a finite number of different values.

Future developments will have to focus on more informed ways of narrowing down resource intervals, but
also on more sophisticated flaw detections with more predictive power. Like for the temporal constraints,
the δ -probing of parameter values is essential for the efficiency of the procedure.

Triggering Function αRTAP

The triggering function for resource planning presents the resource deficiencies not only to the specific
modification generator but also to ordering and variable binding refinements. Bottlenecks of over-allocations
may be resolved in this way by an appropriate ordering of the steps or an equality constraint. An over-
consumption and over-production of a resource can be addressed by adding ordering constraints (in order to
improve the pessimistic estimator) or by introducing appropriate range restrictions of the resource variables.
Finally, a parallel access has to be avoided and therefore definitely needs a step ordering. Otherwise, this
configuration refers to αTAP of the task assignment planning configuration.

αRTAP(Fx) =


MAddResConstr∪MAddOrdConstr∪MAddVarConstr for x = ResThreat
MAddResConstr∪αTAP(Fx) for x = OpenVarBind
/0 for x = ResInconsistency
αTAP(Fx) otherwise

A resource constraint inconsistency cannot be resolved by a plan modification and is therefore not addressed
by any modification generating function. It is a critical flaw and induces a plan discard (cf. Def. 2.35).

12We may assume that the function is able to access the resource profiles and can therefore deduce which resources are over-consumed,
respectively over-produced.
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Inference Functions – InfRTAP

The inference functions in the resource planning configuration are responsible for maintaining the com-
pleteness property in the solution criteria: every task expression in the plan that utilizes a resource has to be
reflected in the constraint set and the information about any term that occurs in the resource constraints as
well as in the variable constraints has to be kept consistent in both sets. This leads us to the following two
inference functions:

Definition 3.34 (Resource Variable Introduction). For a given resource plan P = 〈TE,≺,VC,RC〉 and plan-
ning problem π , the inference function f in f

IntroResVar adds appropriate resource constraints to plan P for every
plan step that is apparently not yet represented in RC.

For each plan step te in TE that includes in its precondition the query of a term τ of sort Z with Z ≤
NonConsumable and for which allocτ

te does not occur in RC:

f in f
IntroTempVar(P,π) 3


〈{0≤ allocτ

te ≤ τ ′}, /0〉 for query ≡ (τ,min(τ,τ ′))
〈{τ ′ ≤ allocτ

te < ∞}, /0〉 for query ≡ (τ,max(τ,τ ′))
〈{allocτ

te = τ ′}, /0〉 for query ≡ (τ,τ ′)

If the sort of τ is Z ≤ Consumable, then the above inference function references resource variable inτ
te

instead.

For each plan step te in TE that includes in its effects the update of a term τ of sort Z with Z ≤ Numerical
and for which neither inτ

te nor outτ
te do occur in RC:

〈{0≤ inτ
te < ∞,0≤ outτ

te < ∞,
τ

min
te
≤ outτ

te − inτ
te ≤

τ
max

te
}, /0〉 ∈ f in f

IntroTempVar(P,π)

with te producing τ at rate nτ
te ∈ [minτ

te ,maxτ
te ]. •

The main benefit of the above inference function is that it allows to deploy resource-unaware configuration
components that can now safely manage the TE set. The same holds for the following inference func-
tion that parallels the temporal constraint set synchronization by adding explicit constraints where implicit
dependencies exist between the resource and the variable constraint sets.

Definition 3.35 (Resource and Variable Constraint Synchronization). For a given problem π and resource
plan P = 〈TE,≺,VC,RC〉, the inference function f in f

IntroVarConstraint adds variable constraints if they do not
reflect a definite result in the resource constraint set and vice versa.

For each variable v ∈ V that occurs in VC and for which τ ≤ v ≤ τ holds in RC, the inference function
application f in f

IntroVarConstraint(P,π) contains the modification 〈{v=̇τ}, /0〉 if this co-designation constraint
does not hold yet in VC. Please note that τ is necessarily a rigid term.

For each variable v ∈ V that occurs in RC and for which v=̇τ holds in VC, the application of the inference
function f in f

IntroVarConstraint(P,π) contains the plan modification 〈{τ ≤ v≤ τ}, /0〉 if this resource constraint
does not hold yet in RC. •

Both inference functions perform a conservative extension of the resource constraint set and are therefore
sound.
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Summary of the RTAP Configuration

With the above definitions for the resource planning function components, CRTAP can be summarized as
follows:

CRTAP = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask, f det
ResInconsistency, f det

ResThreat}

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr, f mod
AddResConstr},

{ f in f
IntroResVar, f in f

IntroVarConstraint},
Str〉

Theorem 3.11 (Properness of CRTAP). CRTAP is a proper system configuration in the sense of Def. 3.2.

Proof. Given that CTAP is proper according to Theorem 3.1, the following arguments hold, analogously to
the temporal planning configuration.

DetRTAP is a complete set of sound detection functions, because the included set DetTAP is proven to be
complete and the additional detection functions directly correspond to the solution criteria concerning the
resource meta-constraint system.

ModRTAP is a semi-complete set of sound modification generating functions, because the addition of re-
source constraints is a sound generator that satisfies any proposed flaw if the corresponding refinement is
applicable and because it extends ModTAP, which is semi-complete as well.

InfRTAP has been shown above to be a set of sound inference functions.

It can also be easily seen that ModRTAP corresponds to DetRTAP: every modification generator is assigned a
detection function in αRTAP.

Theorem 3.12 (CRTAP is Modification-Complete). CRTAP is modification-complete according to Def. 3.3.

Proof. Given that the included CTAP configuration is modification complete (Theorem 3.2) and that the only
un-processed flaw is a critical one (resource constraint inconsistency), the proposition holds.

3.3.4 Scheduling – CSCHED

According to our introduction to scheduling in Sec. 1.2, we understand scheduling as the process of finding
a solution to the temporal aspects and resource restrictions of a plan that is given as an input specification.
System configuration CSCHED is our corresponding incarnation of the refinement planning framework and it
is intended to serve as a scheduling subsystem in all its extensions. We thereby generalize from classical
scheduling in two ways: First, we do not focus on the optimization aspects of scheduling, for example, cost
minimization, but instead on verifying the feasibility of the resulting schedules. Please note that this does not
prevent our approach from employing optimizing methods. Secondly, we assume that the input specification
is not necessarily finalized, in particular if our scheduling configuration is extended with respect to activity
inserting refinements. Both generalizations are, of course, mutually dependent.

Fig. 3.17 gives an example for this kind of scheduling applications. Project planning software has been used
for illustrating several of our configurations, in this case, we address practically all aspects that are depicted
in the screenshot. Given the disaster relief mission scenario from resource planning (Sec. 3.3.3), the figure
shows actions with absolute durations, for example in line 11 of the left column. Each action is associated
with specific resources (lines 12 and 13) that are allocated by the given amount. The time line view gives
the user an impression of the plan’s progression and the resource utilization. This system corresponds to our
view on scheduling because it verifies the availability of the resources at the given times, notifies the user of
resource over-consumptions, and also indicates where resource usage is declared but not instantiated (here,
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Figure 3.17: Scheduling example, a simplified scenario modelled in and processed by the commercial
project planning software Merlin ( c©2002-2004 by ProjectWizards).

TE <

VC

TC

[ min, max ]

RC

Figure 3.18: The conceptual view on the scheduling system configuration.

this means un-specified staff). The displayed tool’s strengths are clearly the visualization of the scenario and
less the representational capabilities or automated problem solving competence. The reader may think of the
scheduling configuration being a back-end engine to such a tool that deals with more expressive temporal and
resource representations and that provides two essential services: It verifies the user’s actual specification
(the pictured tool does so for significantly limited expressiveness though) and is furthermore able to predict
potential bottlenecks and to suggest corresponding corrective measures.

We factorize the scheduling functionality as shown in Fig. 3.18: The first two compartments contribute with
reasoning about partially ordered plan steps and parameter relations, denoted by the data structures TE and
VC, respectively. Based on this rudimentary plan skeleton we employ two independently working compe-
tences for dealing with temporal and resource knowledge (TC and RC). They are coordinated indirectly via
the plan skeleton: if and only if the temporal position implies a change on the qualitative plan step ordering,
the causal structure of the plan changes, certain execution scenarios are not taken into consideration any
more, and hence a re-assessment of the resource situation becomes necessary. On the contrary, resource
restrictions may require that certain resource consumption and production options are eliminated from the
solution candidates. If and only if this can be achieved by manipulating the ordering relation between those
steps, resource reasoning induces a change in the temporal dimension of the plan.
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This constellation perfectly fits our planning system configurations for task assignment planning CTAP, tem-
poral planning CTTAP, and resource planning CRTAP. The scheduling configuration will therefore extend both
CTTAP and CRTAP in a joint framework instance that is composed of the union of the respective function sets.
Our conceptual separation of resource and temporal reasoning thereby resembles the O-OSCAR scheduling
approach [50] in which a temporal network is the basis for a meta-CSP that deals with resource allocation
interactions [52].

Domain Model Specifics

The scheduling domain model specification is a merge of temporal and resource planning, that means
DSCHED = 〈M , /0,T〉 with M including the resource-specific sort and function specifications and T consist-
ing of temporally extended operator schemata that query and manipulate resources via their preconditions
and effects, respectively. Concerning domain model consistency, the SCHED configuration benefits from the
clean, orthogonal design of its base configurations:

Definition 3.36 (Consistency of Scheduling Domain Models). A scheduling domain model DSCHED =
〈M , /0,T〉 over a given language L is called consistent if and only if the following conditions hold:

1. The included domain model for temporal planning is consistent (see Def. 3.21).

2. The included domain model for resource planning is consistent (see Def. 3.29).

•

A schedule is consequently the joint data structure of a temporal and resource plan, that means P = 〈TE,≺
,VC,TC,RC〉 with TC being the set of temporal constraints and RC the respective set of resource constraints.
The notion of consistency that is associated with a schedule is therefore directly based on the corresponding
consistency definitions for the included substructures.

Definition 3.37 (Consistency of Schedules). A schedule P = 〈TE,≺,VC,TC,RC〉 over a given language L
and domain model DSCHED is called consistent if and only if the following conditions hold:

1. The included temporal plan P = 〈TE,≺,VC,TC〉 is consistent over the included temporal domain
model DTTAP (see Def. 3.21).

2. The included resource plan P= 〈TE,≺,VC,RC〉 is consistent over the included resource domain model
DRTAP (see Def. 3.29).

•

Problems and Solutions

A scheduling problem is a structure that combines the problem specification features of a temporal and re-
source planning problem in equal shares. With πSCHED = 〈DSCHED,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,TCinit ,RCinit〉〉
we specify the activities that are to be scheduled (TEinit ), the precedence constraints on those activities
(≺init ), and the relationships that hold between activity parameters (VCinit ). Please recall that the temporal
constraints (TCinit ) and the resource constraints (RCinit ) represent additional information on the problem’s
restrictions that goes beyond the knowledge that is stored in the task schemata.

The global time frame, for example the deadline for finishing the plan, is modelled implicitly in the initial
state and goal state description. Since we use the null plan representation for describing the problem, this
information is stored in the temporal constraints of TCinit that refer to the initial and goal state task. In the
same way, resource availability and capacities are introduced by resource constraints in RCinit on the initial
and goal state task.

Given a scheduling problem πSCHED = 〈DSCHED,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,TCinit ,RCinit〉〉, the schedule
P= 〈TE,≺,VC,TC,RC〉 is a solution to πSCHED if and only if the following conditions hold:
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1. The included temporal plan P′ = 〈TE,≺,VC,TC〉 is a solution to the included temporal planning
problem π ′TTAP = 〈DTTAP,sε ,>,〈TEinit ,≺init ,VCinit ,TCinit〉〉. Domain model DTTAP is thereby the cor-
responding temporal planning model without resource queries and updates in the operator schema
definitions.

2. The included resource plan P′′ = 〈TE,≺,VC,RC〉 is a solution to the included resource planning prob-
lem π ′′RTAP = 〈DRTAP,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,RCinit〉〉. Domain model DRTAP is thereby the cor-
responding resource planning model without temporal information annotations in the operator schema
definitions.

It is important to take into account that this configuration is able to describe and solve classical scheduling
problems, including their optimization aspects (given suitable strategy functions). In classical scheduling,
however, the solution is implicitly characterized by TE = TEinit , which is not directly supported by our re-
finement semantics. CSCHED will consequently act as a classical scheduling engine, but it will not do so in an
extended system configuration that provides task inserting plan modification generators.

Detection Functions – DetSCHED

The joint of the solution criteria of the TTAP and RTAP configurations is reflected in the structure of the
detection functions for the scheduling configuration. Since the problem aspects can be mapped uniquely on
each of the two sub-configurations, a union of the two corresponding detection function sets DetSCHED =
DetTTAP ∪DetRTAP satisfies the above solution criteria.

Modification Generating Functions – ModSCHED

Regarding the available plan refinements, the scheduling functionality is instantly available in a union of
the modification generating function sets ModSCHED = ModTTAP ∪ModRTAP. This is possible because our
configuration design bases both reasoning layers on the shared, neutral task assignment plan representation.
Hence, any additional cross-configuration synchronization mechanism is redundant.

Triggering Function αSCHED

In joint system configuration extensions, one has to be careful about the inter-configuration relationships
between the flaws of one configuration and the plan modifications of the other. However, as we have ex-
plained above, the included temporal and resource planning configurations do not share any knowledge than
that about the underlying TAP plan. Their coexistence in one configuration extension does consequently not
impose any modifications on the triggering relation.

αSCHED(Fx) =

{
αTTAP(Fx) for x = OpenTmpBind
αRTAP(Fx) otherwise

The function basically mimics αTTAP but instead of passing all unhandeled flaws to the task assignment
trigger we employ the resource planning function αRTAP, which in turn preserves the underlying αTAP like
in temporal planning.

Inference Functions – InfSCHED

Our arguments for simply joining the modification generating function sets apply as well to the refinement
options that are provided by the inference functions. We therefore define InfSCHED as InfTTAP ∪ InfRTAP
without the need of further adjustments.
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Summary of the SCHED Configuration

CSCHED, the system configuration for classical scheduling, is composed of the following function sets:

CSCHED = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask,

DetTTAP︷ ︸︸ ︷
f det
TempInconsistency, f det

OpenTmpBind,

DetRTAP︷ ︸︸ ︷
f det
ResInconsistency, f det

ResThreat}

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr,

ModTTAP︷ ︸︸ ︷
f mod
AddTempConstr,

ModRTAP︷ ︸︸ ︷
f mod
AddResConstr},

{
InfTTAP︷ ︸︸ ︷

f in f
IntroTempVar, f in f

IntroTempDist, f in f
IntroOrdering,

InfRTAP︷ ︸︸ ︷
f in f
IntroResVar, f in f

IntroVarConstraint},
Str〉

Theorem 3.13 (Properness of CSCHED). CSCHED is a proper system configuration in the sense of Def. 3.2.

Proof. The property holds because, according to Theorems 3.9 and 3.11, the included CTTAP and CRTAP are
proper system configurations.

Theorem 3.14 (CSCHED is Modification-Complete). CSCHED is modification-complete according to Def. 3.3.

Proof. The proposition follows directly from Theorems 3.10 and 3.12.

3.4 Hybrid Planning and Scheduling – CPANDA

With the system configurations for hybrid planning CHYBP (Sec. 3.3.1) and for scheduling CSCHED (Sec. 3.3.4)
we have created two cornerstones for realizing a complete coverage of planning functionality aspects as we
have stipulated them in the introduction chapter. On the one hand, we have an implementation for integrating
hierarchical planning and the concept of synthesizing plans from operators by causal reasoning, on the
other hand we have the means for describing, analyzing, and manipulating activity networks that extend
temporally and utilize resources. Bringing both together in this joint extension CPANDA will yield two major
results: The first and most obvious is that we instantiate in our framework a hierarchical planning system
that is able to reason about time and resource demands. Since both configurations will operate within the
framework’s refinement planning paradigm, the result of the fusion is a really integrated approach in which
planning and scheduling completely interleave. Furthermore, if the strategy does not deliberately introduce a
bias towards one sub-configuration, the system opportunistically switches between operating in the planning
and in the scheduling methodology.

The second result lies in the way the joint extension is realized: If the corresponding function sets were
simply joined without further adaptation, the integrated configuration would work as a scheduler not until
the primitive operator level is reached by the refinements of the hybrid planner. Although this would be some
sort of integration (and in fact the semantic basis of most hierarchical resource planning systems), we missed
the opportunity to deal with temporal and resource restrictions on the abstract task level. We will therefore
redefine some of the configurations’ functions such that the hierarchical aspects of planning are reflected on
the scheduling side as well, which will add a novel dimension to scheduling, namely hierarchical resources.
This topic has been touched briefly in CSCHED when we discussed the role of the sort hierarchy in the context
of what it means to allocate a resource of some abstract sort. In this section, we will address the issue of
hierarchical resources by identifying four types of abstraction that can be derived from applying our action
and state abstraction methods, in particular the state abstraction axioms, to resources. We thereby identify
the following basic abstraction principles:
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Subsumption: defines one resource to be a specialization of another resource;

Approximation: relaxes upper and lower bounds for numerical values;

Qualification: implements the transfer from symbolic to numerical values;

Aggregation: groups components to super-structures.

The hierarchies that are imposed on resources by these abstractions apparently fit nicely the decomposition
hierarchies of actions, such that abstract tasks are not only characterized by abstract symbolic preconditions
and effects but also by abstract resource utilization. Furthermore, hierarchical resources are a very natural
way of structuring complex domain models. Many of our scenarios are taken from mission documentations
of the German Technisches Hilfswerk (THW) – a governmental disaster relief organization – within the
flood disaster at the river Oder in July 1997. In this domain of crisis management support a large number
of resources can be identified that are only used at specific levels of abstraction, respectively resources that
need to be differentiated on the concrete level. For example, when securing a dyke, thousands of sandbags
have to be prepared and installed, several types of specialized vehicles fortify constructions or build new
ones – assisted by workers on the dykes and divers in the water. Furthermore, various kinds of tools and
materials have to be organized, including power supplies for the illumination of the working area at night,
and the like. On the more abstract level, we find “units” (consisting of “personnel”) that use “building
materials” and consume “energy” in doing so. On the concrete level the human planner specifies that diesel
fuel is needed or that electric power is required to run some machinery.

Integrating hierarchical knowledge in scheduling or resource reasoning is typically understood as propa-
gating the bounds of primitive task networks into their abstractions [61], as structural advice for defining
(and efficiently solving) sub-problems [295], or as deducing value assignment strategies from hierarchical
resource dependencies [104]. The example scenarios that we have used above for motivating some of our
application requirements have been realized in current commercially available project planning systems;
their interpretation of hierarchical information is even weaker: the systems allow to define a simple form of
aggregation of processes, which is solely used for the purpose of presentation to the user (grouping activities
visually under the label of an abstract description) and for displaying cumulative time bounds and resource
consumptions.

The fundamental difference between our integration effort and existing approaches is that we base resource
utilization in the semantics of our refinement planning framework. In doing so, we achieve a correspon-
dence between the abstraction levels of resources and other state features, which is not only advantageous
for modelling purposes but also allows to address temporal and resource issues at any level of abstrac-
tion.

Domain Model Specifics

A domain model for hybrid planning and scheduling combines the specifications of the CHYBP and CSCHED

configurations. That means, a PANDA domain model over a language L is given by the structure DPANDA =
〈M ,∆,T,M〉. The logical model M contains all sort and function specifics from scheduling and ∆ is a set of
state abstraction axioms (cf. Sec. 3.3.1). The set of task schemata T consist of primitive operators and com-
plex tasks that are both temporally extended schemata, carrying preconditions and effects (cf. representation
of CPOCLP), and employing resource queries and manipulations.

Resource handling in tasks requires a more detailed description: Action schemata in this configuration, in
particular those of complex tasks, are specified by the following structure

t(v) = 〈prec(t(v)),post(t(v)),dmin
t(v),d

max
t(v) 〉

Since post(t(v)) is a formula over L (cf. Def. 2.5) and not built from elementary operations, the term update
per se is not available. For that reason, the rigid query relation has been declared by the resource planning
configuration as an exception that is allowed in effect formulae. The idea is as follows: Instead of explicitly
updating the term in the effect formula, we can verify that an appropriate update has happened by comparing
the term with the updated value. However, since this verification query is evaluated in the state after the
transition(s) that the task represents, any reference to the term’s value before the transition(s) has to be

133



3 System Configurations

preserved by a rigid symbol that is queried in the task’s precondition. That means, the manipulation of
a resource τ by some operation g is given by the structure t(v) = 〈. . . ≡ (v,g(τ)), . . . ≡ (τ,v),dmin

t(v),d
max
t(v) 〉,

where v ∈ V is a parameter of the task. Please note that whether this auxiliary query variable is added to the
task parameter list or if it is declared locally to the task is of limited relevance. For practical considerations,
we decided to introduce “non-essential” local parameters in task schemata for the sole purpose of resource
binding, but this thesis will use the more formal task parameter solution. In any case we may assume that
task introduction is always generating “new” variable symbols for these queries.

An important aspect of our abstract resource manipulation approach via queries is that we can specify ranges
of resource production and consumption. A task specification

t(v) = 〈. . .≡ (vlb,g(τ))︸ ︷︷ ︸
set lower bound

∧
set upper bound︷ ︸︸ ︷
≡ (vub,h(τ)), . . .≡ (max(τ,vlb),τ)︸ ︷︷ ︸

verify lower bound

∧
verify upper bound︷ ︸︸ ︷
≡ (min(τ,vub),τ),dmin

t(v),d
max
t(v) 〉

defines resource level τ to be set to a value in the interval [g(τ),h(τ)], which is however not necessarily a
consumption or a production; in fact, the abstract action may be undecided between reducing and increasing
a resource level. We will see the rationale for range usages below.

As an example for the PANDA task specification, we revisit an operator definition in the resource planning
configuration:

DistributeSandbags(u,d) =〈>, :=supplies_sb(supplies_sb(d)− (length(d) ·100))〉
is now defined as follows:

DistributeSandbags(u,d,x) =〈≡ (x,supplies_sb(d)− (length(d) ·100)),
≡ (supplies_sb(d),x),

dmin
DistributeSandbags, dmax

DistributeSandbags〉

Please note, that the ≡ relation is not discriminating the position of the arguments and therefore must
not be confused with the assignment operation in programming languages or PDDL resource manipula-
tions [99]. In our example, the semantics of the task effect is clearly to verify that the (flexible) term
supplies_sb(d) has decreased its value by the given amount, that is to say, it changed its interpreta-
tion to the rigid value of parameter x. However, if we bound the flexible term in the precondition to
another flexible one, say, ≡ (supplies_sb(d′),supplies_sb(d)− 1) , and in the postcondition accord-
ingly ≡ (supplies_sb(d′),supplies_sb(d)), the meaning of the task is not an implicit reduction of
supplies_sb(d) by 1, because we did not store any information about the term interpretation between one
state and its successor. We can only deduce is that the relative distance between the interpretations is reduced
from 1 to 0, which can also be achieved by increasing the reference term (which may have been the intended
meaning). Although these are all consequences of a coherent semantic basis that is very compact and precise,
we recommend domain modelers that are used to more “practitioners oriented” specification languages to
make themselves particularly aware of these aspects. In this context it is also worth noting that a supposed
consumption effect ≡ (supplies_sb(d),supplies_sb(d)− 1) is trivially inconsistent in all reasonable
models, because a numerical term can never evaluate to its own decrement.

Before we can define decomposition methods, we have to introduce the plan structure for the PANDA config-
uration. Hybrid planning and scheduling thereby combines all the features of its sub-configurations: A plan
P = 〈TE,≺,VC,CL,TC,RC〉 consists of the usual set of plan steps TE, ordering constraints ≺, and variable
constraints VC. CL denotes the set of causal links like they are defined in CHYBP, and TC and RC are the
temporal constraints, respectively resource constraints from CSCHED. Consistency for such plans is derived
from the respective configuration’s consistency criteria.

Definition 3.38 (Consistency of Plans for Hybrid Planning and Scheduling). A plan for hybrid planning and
scheduling P= 〈TE,≺,VC,CL,TC,RC〉 over a given language L and domain model DPANDA = 〈M ,∆,T,M〉
is called consistent if and only if the following conditions hold:

1. The included hybrid plan P′ = 〈TE,≺,VC,CL〉 is consistent over L and the corresponding domain
model fragment DHYBP (see Def. 2.12).
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2. The included schedule P′′ = 〈TE,≺,VC,TC,RC〉 is consistent over L and the corresponding domain
model fragment DSCHED (see Def. 3.37).

•

Since the hybrid planning and scheduling approach operates with complex task expressions, plan consistency
becomes a criterion for the legality of the included decomposition methods.

Definition 3.39 (Consistency of Hybrid Planning and Scheduling Domain Models). A hybrid planning and
scheduling domain model DPANDA = 〈M ,∆,T,M〉 over a given language L is called consistent if and only if
the following conditions hold:

1. The included hybrid domain model is consistent (see Def. 3.19).

2. The included scheduling domain model is consistent (see Def. 3.36).

3. For all method specifications m ∈ M with m = 〈t(v),〈TE,≺,VC,CL,TC,RC〉〉:
a) For every resource r that is queried or manipulated by t(v), let RCopt be the optimistic profile

of the resource plan that is included in the method’s RTAP network 〈TE,≺,VC,RC〉. The input
level of the first, that is to say, the most producing plan step in the leading stratum (see p. 121) is
given by the resource variable inr

opt ; the output level of the last plan step in the profile, the least
consuming one in the last stratum, is represented by outropt . Let furthermore RCt(v) be the set
of resource constraints that define the input and output levels of the complex task schema, inr

t(v)
and outrt(v), as well as the appropriate change rates according to the complex task schema (see
p. 120). In a consistent domain model, the resource constraint set

RCopt ∪{inr
t(v) = inr

opt ,outrt(v) = outropt}∪RCt(v)

is a consistent resource constraint network, as well as the analogous constraint set

RCpess∪{inr
t(v) = inr

pess,outrt(v) = outrpess}∪RCt(v)

with the respective pessimistic profile RCpess and levels inr
pess and outrpess.

b) Let endt(v) be in the interval [startt(v) +dmin
t ,startt(v) +dmax

t ], according to the complex task
schema. Let furthermore TC′ be a temporal constraint network that is obtained from TC by
including all constraints that are implied by TE and the step ordering ≺ (see p. 112), as well as
two additional constraints for each task Expression te ∈ TE, namely startt ≤ startte and endmax

te ≤
endmax

t . In a consistent domain model, TC′ is a consistent temporal network.

•

The above definition of domain model consistency transfers our established notion of abstraction into the
scheduling configuration aspects of CPANDA: a concrete solution has to be a solution on the abstract level as
well. The first method criterion means that the bounds for each resource r that are induced by the complex
task schema have to be valid bounds for the implementing task network. The same concept holds for the
temporal constraints in the second criterion, that requires the time window of the implementation to be
included in the time window of the abstract action. Since in a hybrid planning and scheduling domain model
the complex tasks have multiple methods defined for their implementation, the consumption or production
range of an abstract action becomes a reasonable modelling concept. As we have seen above, our complex
task model is able to express such ranges.

Relying on the representation concepts for abstraction in planning with resources, which we have defined
so far, we will now present the utilization of these abstraction hierarchies in our refinement planning frame-
work.
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Figure 3.19: Abstraction of resources by building a subsumption hierarchy.

Subsumption

Subsumption is expressed by defining one type of resource to be a specialization of another via the sort
hierarchy of the domain model. We have introduced this kind of resource abstraction briefly in the re-
source planning configuration. Fig. 3.19 shows an excerpt of a sort hierarchy on resources that is part of
the example domain that we have shown in Fig. 3.14. Typical disaster relief missions involve several types
of transportation units; we therefore define an abstract transportation task allocating one unit of the ab-
stract resource THW Unit – indicated by the dashed orange arrow. After a task decomposition refinement
step, the task is specialized into a more concrete way of transportation. For example, the configuration
instance chooses a method that decomposes the abstract task into a network that implements a shipping
transportation task. According to the complex task signature and a state abstraction axiom that is defined
as

∀uUnit, fromLocation ∃vVehicle,aAircraft,bBoat,rRoad,hHeight,wWaterStreet :
At(u, from)⇔ StandingAt(v, from,r)∧ ≡ (u,v) ∨

AircraftAt(a, from,h)∧ ≡ (u,a) ∨
BoatAt(b, from,w)∧ ≡ (u,b) ∨ . . .

one unit of the more concrete resource Boat has to be allocated (dashed green arrow), which is consistent
with the subsumption defined above.

Reasoning within this hierarchy is quite similar to the mechanism involved in dealing with symbolic causal
interactions in the hybrid planning configuration. Since every resource qualifies for being allocated instead
of one of its super-sorts, usage profiles have to take into account that

1. every allocation of a resource implies an allocation of the respective super-sort, and

2. every allocation of a resource implies a possible allocation of every sub-sort.

As a consequence, every profile over a resource in RC has to include the profiles of subsumed resources.
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Figure 3.20: Abstraction of resources by approximation. The abstract task over-estimates the duration of
every expansion.

Approximation

Numerical values for resources and their manipulation operations may be estimated on the more abstract
level of a plan, which we call an approximation. Durations for tasks are often approximated, as their ex-
act time consumption cannot be calculated precisely until the very concrete plan refinement level has been
reached with all necessary tasks inserted in the plan. Fig. 3.20 shows possible refinements of the transporta-
tion task together with an informal account of the respective durations.

In this example, the overall time interval for the abstract transportation task over-estimates all of its pos-
sible refinements. The sum of the durations for the expansion that contains the transportation by he-
licopter and its loading operations is in particular smaller than that of the tasks involved in delivery by
truck.

The estimation of duration parameters is modelled, as described in the temporal planning configuration, by
duration intervals with lower and upper bounds ranging from zero to infinite. Infinite upper and zero lower
bounds represent open intervals for the informal concepts “at least” and “at most”, respectively. Approxima-
tion facilitates a very natural way of changing the view on numerical values from one level of abstraction to
the next. In a situation like that depicted in Fig. 3.20, we could like to model that the abstract transportation
task takes at least four hours, the loading procedure at most ten minutes, and so on. We note however, that
by this kind of (numerical) approximation we may sacrifice an important monotonicity property, that is to
say, it does not guarantee to over-estimate increasing resource manipulations and under-estimate decreasing
ones along the task refinements in a predictable way: the abstract task uses a resource “at least”, its sub-task
uses it “at most”, and the third abstraction level uses again an “at least” formulation (given that the task
specifications are consistent, the constraints will eventually narrow down all ranges). It may therefore not
be usable as a heuristic for reducing the search space as efficiently as desirable: For example, a resource
over-consumption may turn out harmless after another refinement step if production and consumption are
not consistently over- and under-estimated, respectively. Another point here is the accuracy – or in some
sense admissibility – of the approximating function. The more precise the estimations are, the better can
resource information guide search.

On the other hand, we can use the method definitions to check for inconsistently over- and under-estimating
approximation hierarchies off-line. Similar calculations can guide the scheduling process by suggesting to
assign interval restrictions as soon as particular expansions are ruled out by the planning process: According
to Fig. 3.20, after the system has unsuccessfully tried to use the transporting method using trucks, the abstract
time estimation can be reduced.
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Figure 3.21: Energy as abstraction of resources by qualifying the numerical resources Fuel and Electric
Power.

Qualification

In some cases, approximation may not make much sense when building a task hierarchy. For the abstraction
of quantitative, numerical values, a modeler may want to specify a phase transition from quantitative de-
scriptions to qualitative, symbolic terms. This transition is referred to as qualification. An example: There
are many ways for loading material on a transportation unit, and all of them consume a certain (possibly
approximated) numerical amount of energy. The two gadgets for performing the tasks are electrical fork lifts
used at urban supply centers and all-terrain fork lifts driven by diesel fuel that operate on site. As their two
energy sources do not reasonably correlate with respect to their consumption to allow for a good estimation,
we abstract from concrete numbers and intervals and speak of energy in general that has to be checked or
refilled before the loading task can be performed.

Fig. 3.21 shows such a situation: The resource hierarchy at the top implements qualification (see the dotted
line) by defining Energy as the super-resource of Fuel and Electricity with Fuel subsuming diesel
fuel and gas and with Electricity subsuming the electric charge of batteries and the electric power of
generators. The abstract loading task load on the right hand side includes the resource allocating term over
function energy : Unit→ Energy in its precondition. We assume that (the non-numerical) energy has to
be verified beforehand by an appropriate inspection task check, which carries a classical postcondition for
contributing the appropriate state feature (denoted by the dashed arrow).

The example furthermore indicates two methods for implementing the loading procedure, namely one that is
dedicated to dealing with an electric fork lift and another that describes operating a diesel driven model. The
relevant precondition literals employ functions charge : Unit→ ElectricCharge and f uelLevel : Unit→
Fuel; for the sake of readability, we make use of an abbreviated notation a > b instead of the query literal
≡ (a,max(a,b)). The abstract energy resource and its consumption are related to their concretization by the
techniques that we call subsumption and qualification: With a sort hierarchy like that of Fig. 3.21 and an
occurrence of resources in the state abstraction axioms like

∀uUnit : Checked(energy(u)) ⇔ charge(u) > 550 ∨ fuelLevel(u) > 120 ∨ . . .

the abstract energy usage is semantically connected with numerical resource profiles. The above axiom
implies that if the abstract resource energy is characterized as being “checked” and therefore available on
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the abstract state level, this means for a refinement state that a numerical quantity of 550 ampere-hours of
electric charge is accessible, respectively, 120 liters of diesel fuel. The figure depicts the refined causality
by green dashed arrows between the decomposition alternatives for preparation and loading tasks (ef_load
and df_load).

The hybrid planning and scheduling configuration addresses resource qualification in profile computations
by exploiting the sort hierarchy and state abstraction axioms as follows:

1. For each plan step, for each occurrence of a literal that constitutes a qualified resource, the corre-
sponding allocations are propagated into the resource constraint set. According to the subsumption
procedure, this is to be done in all profiles concerning the quantitative sub-resources.

2. The formula that qualifies a resource holds in a state if the corresponding resource queries and condi-
tions are satisfied.

This allocation rules imply, that in the above example the abstract loading task consumes (potentially) 550Ah
of electric charge and at the same time 120l of diesel fuel until that task is decomposed and the resource
consumption is specialized accordingly, for instance, into the electric variant (which releases the amount
of 120l fuel in the Diesel profile). On the other hand, the availability of the given amount of electric
charge is interpreted to be sufficient for satisfying the abstract need for energy. Although this is regular state
abstraction axiom reasoning, it requires an “oracle”, in this case the resource subsystem, to compute the
numerical profile levels for the state in question.

The rationale behind this kind of hierarchical relation is to determine a symbolic causal structure on the
abstract level and to refine it into numerical quantities as soon as the planner decided which expansion
schemata are appropriate. Qualification is conceptually related to approximation and hence it may be a
worthwhile effort in future work to integrate them into one abstraction principle. In particular temporal
reasoning seems to benefit from a qualification step with very natural specifications such as task durations
that are “long” or starting times being “early in the morning”.

Aggregation

Aggregation is a structural abstraction, used for complex resources that are composed of a number of more or
less independent components, which are in turn regarded as components as well. The disaster relief scenario
includes many examples for aggregations. A set of several THW units, for instance, is typically organized in
a platoon such that the units’ capabilities make the platoon a multi-purpose aggregate that is deployable in
various operation scenarios. The basic configuration of the platoon aggregate consists of a small bus for the
transportation of persons, two heavy trucks for carrying various gadgets, one mission-specific vehicle, and
the personnel for operating the platoon. Specific services are realized by extending the basic setup, as shown
in Fig. 3.22. For example, if supporting measures for broken down energy supplies or drinking water are
needed, mission control does not compile the appropriate equipment from their inventory but deploys a so-
called infrastructure platoon, which is pre-configured with all the required tools and devices mounted on its
trucks. On site, the infrastructure platoon can be split up so that the power lines are repaired independently
from handing out additional equipment to the relievers, etc.

Fig. 3.23 shows an abstract task for organizing power supplies, which allocates one of the infrastructure pla-
toons (see dashed arrow). The components of the platoon are distributed among the tasks in the expansion
network like it is depicted with the small arrows: For example, checking the feeders in the area needs one
of the all terrain trucks (ATTruck) and ten people working. We assume that all relevant access functions are
declared in the domain model, including mtw : Platoon→ Bus for associating a platoon with its crew car
(“Mannschaftstransportwagen”), mlw1 : Platoon→ ATTruck for defining the respective all-terrain multi-
purpose truck, rs : Platoon→ RadioSet for specifying the the radio-communication facility, and finally
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Figure 3.22: Resource aggregation in the disaster relief domain: Platoon structures of the THW.
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Figure 3.23: Abstraction of resources by aggregating components.
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crew : Platoon→ Personnel that gives for a platoon the number of crew members. The platoon aggrega-
tion is then described by declaring state abstraction axioms like the following one:

∀pInfrastructPlatoon, lLocation,rRoad :
Available(p, l) ⇔ StandingAt(mtw(p), l,r)∧MapFeature(l,r)∧

Operational(rs(p), l)∧ ≡ (crew(p),40)∧ . . .

∨ . . .

Reasoning about aggregated resources parallels reasoning about qualified ones, because it combines state
abstraction axiom analysis with the notion of implied and possibly implied allocations. In order to project
resource usage the system has to consider the following:

1. In every resource profile, every allocation of an aggregated resource implies the allocations for each
of its components like they are specified in the respective state abstraction axioms.

2. In every resource profile, every allocation of a potential aggregation component implies a possible
allocation of a corresponding aggregate.

Two remarks concerning the above allocation propagation rules: First, the situation is in some sense the
inversion of subsumption, because it is the component that possibly implies an aggregate allocation (in this
view a top-down rule and a bottom-up heuristic, while subsumption is more of a bottom-up rule and top-
down heuristic). Second, the term “potential component” refers to the possibility that the allocated resource
is either a component of an existing or not yet identified aggregate or that it is an autonomous object that
is not part of any aggregation. If in our example, some buses are defined as autonomous entities, too, then
an allocation of a bus may turn out to refer to the independent object and one platoon is released in the
corresponding resource profiles. Furthermore, it has to be noted that the application of the second rule also
depends on the restrictions that the domain model imposes on sharing components. Given the above exam-
ple, if a task tries to allocate one radio set, the second rule implies the allocation of an infrastructure platoon.
The platoon resource can release the additional allocation only if an existing aggregate can be consistently
identified and reused, which means, according to the state abstraction axiom, that there has to be an infras-
tructure platoon present at the very location at which the radio set is to be used.

Problems and Solutions

A hybrid planning and scheduling problem is a combination of the sub-configurations’ problem structures,
that means, it is given as the joint problem specification of the ones developed in CHYBP and CSCHED:
πPANDA = 〈DPANDA,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,CLinit ,TCinit ,RCinit〉〉. As it is usual for the null plan rep-
resentation, we encode the initial state and the goal state specification as artificial plan steps, including the
global resource constraints and temporal annotations.

A problem specification may be given as illustrated in Fig. 3.24: The initial task network describes the prob-
lem of organizing the power supplies by a given infrastructure platoon in a given area. The figure sketches
a possible implementation (task schema signatures in the beige box) that assumes that electricity can be
restored by repairing the damaged power supplies and therefore includes checking the feeders, providing
the necessary tools and equipment, and finally performing the concrete repair procedures. This example
focuses on the two sub-tasks distributeEquipment and repairPowerLines: the former is supposed to
transport tools and supplies to an on-site camp, the latter installs one of the larger power generators at a
presumably broken supply node. The light blue boxes denote the implementations of these two sub-tasks.
The indent depth thereby indicates the partial ordering of sub-tasks. For example, the implementing method
of distributeEquipment begins with two loading tasks followed by a transportation respectively driving
step and the unloading operations at the end. We skipped the refinement of the transportation (cf. Fig. 3.19),
which is forced by the variable binding constraints of the surrounding network to be instantiated with one of
the Truck units, and hence no other expansion method (flying, etc.) can be used.

On the left hand side, the preparation of the profile calculation is depicted by showing some of the allo-
cated resources at the current level of plan refinement: The profiles for abstract THW units can identify
two disjoint time points for Unit allocations in the network of distributeEquipment and one in that of
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organizePowerSupply
p: InfrastructPlatoon, l: Location

checkFeeders (p, l)

distributeEquipment (p, l)
load (gkw2(p), pu(p), u)
load (gkw2(p), wa(p), u)

unload (gkw2(p), pu(p), u' )
unload (gkw2(p), wa(p), u' )

driving (gkw2(p), l, camp1, routeA)

repairPowerlines (p, l)
load (mlw2(p), 50kVA(p), u'' )
hand-load (mlw2(p), etk(p))

apply (etk(p), inst(nodeA), u3 )
install (50kVA(p), nodeA, u4 )

driving-off-road (mlw2(p), l, nodeA)

Profile Calculation

Unit

Truck

Energy
Energy

Energy
Energy

Diesel

Unit Energy

Diesel

Diesel

Energy and Diesel Profiles

Unit

Unit
Unit

Unit
Unit

ATTruck

Unit, Truck, and All-Terrain Truck Profiles

Figure 3.24: Example for some resource profiles after the expansion of an abstract task.

repairPowerLines. Let co-designation constraints in the first task network assign the same object to the
two loading tasks, and the same to be used again in the unloading procedure respectively: this suggests
ordering constraints among the loading and unloading tasks (cf. CRTAP). The resource reasoning subsys-
tem takes this into consideration by assuming the allocation of at most two instances of Unit, namely
two at the beginning of the loading tasks and a third at the beginning of the unloading, which can be re-
allocated after the loading procedure releases it. For every loading operation, energy checks are implied,
as each of them allocates the symbolic resource Energy (cf. Fig. 3.21). In addition, Diesel is consumed
for the transporting trucks and the power generator, and the trucks itself have to be allocated during driv-
ing.

The profile projections for the different resources involved are shown in Fig. 3.25. Their calculation follows
straight forward from the task definitions. Please note, that the upper three resources are de-allocated after
use, while the others are consumed.

In addition to these explicit profile manipulations, there are implicit manipulations induced according to the
abstraction hierarchy like we have described in the previous section. They are reflected in changes of related
resource profiles. Fig. 3.25 also shows the changed profiles according to the resource hierarchies. We will
focus on the first two time points.

The changes in the beige areas are made according to the resource sort hierarchy, that means, according
to subsumption. The two THW Unit objects at the first time point are potentially assigned to constants of
sub-sort Truck or that of the all-terrain vehicles ATTruck (other sub-sorts are omitted for brevity). At the
second time point, the system propagates the de-allocation of the abstract resource into the sub-resource,
while at the same time the explicit allocation of the ATTruck unit by the off-road transport is reflected in the
super-sort Truck as an implicit allocation.

The blue areas describe the propagation of a qualified resource: The abstract loading tasks need in the begin-
ning two Energy sorted objects. According to the qualification, each of them can be specialized into 120l
of diesel fuel (gas and electricity are again omitted). The explicit allocation of another 150l of diesel by truck
driving implies further Energy consumption on the abstract level (2 abstract units).

We may assume that, according to the problem specification, the capacity of diesel fuel is found to be ex-
ceeded somewhere in the middle of the plan. The conflict resolution strategies for manipulating the ordering
cannot resolve the problem, as there are no suitable production tasks available in the current plan. Since
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Figure 3.25: Resource profiles for the example scenario shown in Fig. 3.24.

this over-consumption is partly caused by charging Diesel implicitly, a solution to this flaw is obviously to
build a plan refinement that conducts a specialization of the abstract energy allocations into other resources.
As we will see in more detail below, decomposing one of the loading tasks into an implementation that
references ef_load achieves this, for it consumes electric power (see Fig. 3.21).

In this example, we may furthermore assume that after performing a task expansion an over-allocation occurs
on the abstract level for sort ElectrForkL, because only one electric fork lift is present on site and the two
loading tasks still not necessarily demand for the same object. The conflict can be resolved by co-designation
plan modifications that assign the same fork lift resource to the loading operations, followed by an order-
ing refinement for sequencing them. Alternatively, a resource producing plan step may be introduced, for
example transporting a fork lift from a central depot to the operation site.

The example has shown the particular role of action abstraction in the hybrid planning and scheduling
configuration CPANDA and has made clear some of the aspects that have to be considered in the expan-
sion refinement. We will examine the corresponding modification generating function in more detail be-
low.

In the described manner, the refinements of the problem specification are systematically explored for the oc-
currence of a plan that is considered a solution. Given a hybrid planning and scheduling problem πPANDA =
〈DPANDA,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,CLinit ,TCinit ,RCinit〉〉, the plan P = 〈TE,≺,VC,CL,TC,RC〉 is a solu-
tion to πPANDA in the PANDA configuration if and only if the following conditions hold:

1. The included hybrid plan P′ = 〈TE1,≺1,VC1,CL1〉 is a solution to the hybrid planning sub-problem
πHYBP = 〈DHYBP,sinit ,sgoal ,Pinit〉 with DHYBP being a fragment of DPANDA that does not contain tasks
with temporal annotations.

2. The included schedule P′′= 〈TE,≺,VC,TC,RC〉 is a solution to the scheduling sub-problem πSCHED =
〈DSCHED,sinit ,sgoal ,〈TEinit ,≺init ,VCinit ,TCinit ,RCinit〉〉 with DSCHED being a fragment of DPANDA that
does not contain decomposition methods. We may assume that all pre- and postconditions that do not
induce resource manipulations are simply ignored.
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Please note that in particular the second criterion ultimately refers to our refinement semantics and does
therefore not need decomposition methods to ground the abstract tasks in sequences of operators. A partially
ordered plan may allow for a safe parallel action execution.

Detection Functions – DetPANDA

The set of detection functions for the hybrid planning and scheduling configuration is the union of the
respective sets of the system configurations HYBP and SCHED. On the flaw detection side, the integration
of resource reasoning and the notion of abstraction is realized via appropriate constraint propagation rules
in the profile calculation, in other words, inside the “oracle” for querying flexible terms. Therefore, the
configuration does not need any additional detection function for validations across the sub-configurations,
and hence, DetPANDA = DetHYBP ∪DetSCHED.

Modification Generating Functions – ModPANDA

The modification generating functions for the hybrid planning and scheduling configuration are all the func-
tions of the sets ModHYBP and ModSCHED except for two minor alterations. First, the plan modifications
for inserting new task expressions have been defined for the partial-order planning paradigm and the corre-
sponding generator function definition is not aware of any resource manipulations and temporal annotations.
Since the resource manipulation is syntactically embedded in the regular pre- and postcondition specifica-
tion and since the temporal information is included in the plan separately via inference functions, we believe
that it is not necessary to redefine f mod

InsertTask explicitly.

In order to properly refine the temporal structure of an abstract task by its implementation, as well as to keep
resource allocations consistent during method applications, the plan modification for task expansion has to
be redefined on the basis of the hybrid planning system configuration. The following definition therefore
reuses the central parts of Def. 3.20.

Definition 3.40 (Expand Task – 2nd Redefinition). Given a hybrid planning and scheduling domain model
DPANDA = 〈M ,∆,T,M〉, a plan P= 〈TE,≺,VC,CL,TC,RC〉, and a flaw f, the third version of the modification
generating function f mod

ExpandTask proposes for every occurrence of a complex task schema instance in f a
decomposition according to every appropriate method definition in M as follows.

〈 TEx∪ ≺x ∪VCx∪CLx∪TCx∪RCx︸ ︷︷ ︸
expansion network

∪
new context︷ ︸︸ ︷

≺′ ∪VC′∪CL′∪TC′∪RC′,

{te}︸︷︷︸
complex task

∪
old context︷ ︸︸ ︷

≺′′ ∪CL′′∪TC′′∪RC′′ 〉 ∈ f mod
ExpandTask(P,f,D)

The expansion network is thereby substituting the complex task in consideration of its temporal and causal
context. More formally, the plan modification consists of the following components:

1. te ∈ TE∩ comp(f) and te = l : t(v) with t ∈Tc

2. ≺′′ is the complete subset of ordering constraints ≺ in which te occurs, that means, it either contains
te ≺ teP or teP≺ te for any teP 6= te in P

3. CL′′ is the complete subset of causal links CL in which te occurs, that means, it either contains te
ϕ−→ teP

or teP
ϕ−→ te for any ϕ and teP 6= te in P

4. TC′′ = RC′′ = /0

5. mx = 〈t(v),〈TEx,≺x,VCx,CLx,TCx,RCx〉〉 ∈ M

6. TEx∩TE = /0, ≺x ∩ ≺= /0, VCx∩VC = /0, CLx∩CL = /0, TCx∩TC = /0, and RCx∩RC = /0
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7. ≺′ is a set of new ordering constraints tex ≺ teP for every te ≺ teP in P and tex ∈ TEx, respectively
teP≺ tex for every teP≺ te in P and tex ∈ TEx

8. VC′ and CL′ are sets of new variable constraints and causal links such that:

a) For each incoming causal link teP
ϕ−→ te ∈CL′′, let TE ′x ⊆ TEx be a set of task expressions such

that for any state s and valuation β that is compatible with VC∪VCx∪VC′:

s |=M ,β (
∧

tex∈TE ′x

prec(tex))⇒ϕ

TE ′x is thereby a minimal set in the sense that if any task expression is removed, the equation
does not hold. Let furthermore ϕi be a formula for each tei in TE ′x such that

s |=M ,β (prec(tei)⇒ϕi)∧ (ϕ⇒ϕi)

For each pair of plan steps texi and formulae ϕi, the set CL′′ includes a causal link teP
ϕi−→ texi .

b) For each outgoing causal link te
ϕ−→ teP ∈CL′′, let TE ′′x ⊆ TEx be a set of task expressions such

that for any state s and valuation β that is compatible with VC∪VCx∪VC′:

s |=M ,β (
∧

tex∈TE ′′x

post(tex))⇒ϕ

TE ′′x is thereby a minimal set in the sense that if any task expression is removed, the equation
does not hold.13 Let furthermore ϕi be a formula for each tei in TE ′′x such that

s |=M ,β (post(tei)⇒ϕi)∧ (ϕ⇒ϕi)

For each such pair of plan steps texi and formulae ϕi, the set CL′′ includes a causal link texi

ϕi−→ teP.

9. TC′ is a set containing the new temporal constraints startte = starttei and endte = endte j with tei and
te j being task expressions in TEx such that there is no tek ∈ TEx for which tek ≺ tei or te j ≺ tek is
consistent with TCx and ≺x. Furthermore, TC′ includes temporal constraints startte ≤ starttel and
endtel ≤ endte for every plan step tel ∈ TEx.

10. RC′ is a set of new resource constraints such that

a) For each consumable resource r that is manipulated by te, RC′ contains the two constraints
inr

te = inr
tei

and outrte = outrte j
with tei and te j being task expressions in TEx that manipulate r.

Furthermore, there is no tek ∈ TEx for which tek ≺ tei or te j ≺ tek is consistent with TCx and≺x.
b) For each non-consumable resource r that is allocated by te, RC′ contains the constraint allocr

te =
allocr

tei
. Plan step tei ∈ TEx thereby allocates r, too, and there is no tek in TEx such that tek ≺ tei

is consistent with TCx and ≺x.

•

Some remarks on the above modification generator definition: Item 4 states that no temporal or resource
constraints are removed from the plan. The rationale for this refinement implementation is to preserve
the temporal context and profile commitments of the abstract plan step with respect to the surrounding
plan structures so that these artefacts can serve as a reference for the expansion network. Furthermore,
it guarantees a conservative constraint set development and is thus an argument for the function’s sound-
ness.

Regarding the new constraints in TC′ and RC′ (items 9 and 10), we would like to point out that their con-
struction parallels the procedure that adapts those causal links in which the complex task occurred (item 8).
Given the deletion of the complex task, the commitment on the more abstract level can only be properly
restored in the more concrete expansion network by connecting the information that is stored in the artefact

13If the respective plan step is obtained from a primitive task schema, we may assume that post(tex) denotes a formula that is generated
by tex.

145



3 System Configurations

constraints with the new plan steps in TEx. The new temporal constraints in TC′ become necessary be-
cause the insertion of the sub-tasks into the qualitative ordering alone is not able to reproduce14 the precise
distances that represent the time window for the deleted te. Item 9 therefore chooses suitable candidates
for consistently inheriting the temporal information: The starting and ending time point is assigned to one
of the tasks in the leading, respectively final stratum of the partial order, taking into account the temporal
constraints in the network TCx.

The analogous situation can be found for RC′ because the constraints in RCx cannot relate resource manip-
ulations and allocations inside the expansion network with variables that are defined outside. In item 10,
the modification generator therefore chooses for each resource an – according to the partial order and the
temporal constraints – first plan step that may inherit the input level and a last plan step for the output level,
respectively.

Note that with the extended definition 3.40 above, the modification generating function f mod
ExpandTask has to

deal with a total of four combinatorial factors in constructing an expansion for a specific flawed complex
task: The first two are those from the previous definition, that means, the choice of implementation method
and the multiple possibilities for redistributing the causal links. The third dimension of complexity is the
choice of the start and end time point assignments, and the fourth combinatorial factor is the choice in-
volved in propagating the abstract resource levels. Since one plan modification has to be generated for each
permutation, the CPANDA task expansion generator issues

|methods for te| · (|input linkings| · |output linkings|) ·
(|start assignments| · |end assignments|) ·
(|input levels| · |output levels| · |assignment levels|)

many plan modifications per flawed abstract task. This product depends of course on the concrete domain
model specification and is hence in a worst case scenario a major problem with respect to efficiency. How-
ever, our experience is that hybrid planning domain models (for example, see Sec. 5.2.2) tend to have few
methods per abstract tasks and allow for only very few linking and resource assignment permutations. The
reason for this lies in the nature of hierarchical modelling, which inclines to define abstractions via summa-
rizing sequences of different actions rather than merging parallel threads of the same type of actions. That
means, that a task implementation relatively seldom uses flexible domain features more than once, because
these are typically processed (made true/false) by the task network and hence cannot appear more than once
without steps undoing the previous effect – in other words, the linking permutations can be expected to be
neglectable. The rigid features can be ignored for this argument, because they only occur in task precon-
ditions and will have to work in every permutation, anyway. Regarding resource access refinements, it is
also not very common to manipulate the (potentially) same resource in more than one thread of tasks. The
dominant modelling style is to split the different state features or resources and to treat them in specialized
activity chains. At the end of the day, in all somewhat reasonably modelled domains, the expansion com-
binatorics is always substantially lower than the degrees of freedom for synthesizing a plan from scratch.

Triggering Function αPANDA

The triggering function for the hybrid planning and scheduling configuration implies the flaw - modification
relationships of the embedded configurations; in addition it implements the cross-configuration dependen-
cies. This concerns in particular the task expansion plan modifications, which naturally become key refine-

14The converse is however given and therefore this step subsumes the insertion of an embedding partial order in item 7 (cf. ≺′
specification in par. 6 of Def. 3.20).

146



3.4 Hybrid Planning and Scheduling – CPANDA

ments for dealing with abstract resource manipulations in the extension of scheduling.

αPANDA(Fx) =



/0 for x ∈ {OrdIncons,VarIncons,

TempInconsistency}
MInsertTask∪MExpandTask for x = ResInconsistency
MAddResConstr∪MAddVarConstr for x = OpenVarBind
MAddOrdConstr for x = UnordTask
MInsertTask∪MAddCLink∪MExpandTask for x = OpenPrec
MAddVarConstr∪MAddOrdConstr

∪MExpandTask∪MAddResConstr for x = Threat
MExpandTask for x = AbstrTask
MAddTempConstr for x = OpenTmpBind
MAddResConstr∪MAddVarConstr

∪MAddOrdConstr∪MExpandTask for x = ResThreat

The newly added resolution relationships are the following three: First, the inconsistency of resource con-
straints can now be resolved by the hybrid planning sub-configuration. The introduction of production steps
can either be performed directly by task insertion or indirectly by expanding a participant. The latter may
also release some resource by refining the consumption and allocation structure. The second new triggering
relation is addressing resource threats by task expansion. This is the identical mechanism to causal threat
handling in hybrid planning, that means, the more concrete resource manipulation structure may allow for a
resource conform course of action by interleaving production and consumption sequences. Thirdly, causal
threats are related to the addition of resource constraints. While it is natural to observe some of the non-
consumable resource over-allocations on the causal level, there may also occur the extremely rare situations
in which term queries may appear as interfering updates. The treatment of open preconditions is not dele-
gated to the resource constraint handling because this would not add the necessary causal link. A conceptual
parallel is however given.

Please note that, in the above triggering function, we do not include the possibility to add temporal con-
straints in those cases that suggest adding an ordering constraint. Enforcing the partial order ensures that
the implicit quantitative temporal structure is restricted minimally with respect to the necessary amount of
change.

Inference Functions – InfPANDA

The only inference function in the hybrid planning and scheduling configuration is responsible for an ade-
quate implication of the causal structure on the quantitative temporal model. While the qualitative partial
order on the abstract plan steps is not affected by causal links except for the consistency criterion that forbids
contradicting orderings, the fine granular temporal model can derive the minimal commitment that a causal
link induces on any two linked tasks.

Definition 3.41 (Causally Motivated Temporal Constraint Introduction). For a given planning problem π

and partial plan P= 〈TE,≺,VC,CL,TC,RC〉, the inference function f in f
IntroCLinkTemp adds for any two causally

linked plan steps a temporal constraint such that the (potentially complex) producer cannot start later than
the (potentially complex) consumer ends.

For each causal link tei
ϕ−→ te j ∈CL for which starttei ≤ endte j does not hold in the constraint set TC, the ap-

plication of the inference function f in f
IntroCLinkTemp(P,π) returns the following plan modification: 〈{starttei ≤

endte j}, /0〉. •

In fact, the inference function proposes a negative ordering constraint that corresponds exactly to the consis-
tency criterion. We note that this constraint is rather weak and that the inference is implied by the refinement
mechanism that tracks causality, combined with the inference of partial-order planning. For the sake of clar-
ity, we present it here, though.
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Summary of the PANDA Configuration

CPANDA, the system configuration for hybrid planning and scheduling, is composed of the following function
sets:

CPANDA = 〈{
DetTAP︷ ︸︸ ︷

f det
OrdIncons, f det

VarIncons, f det
OpenVarBind, f det

UnordTask,

DetPOCLP︷ ︸︸ ︷
f det
OpenPrec, f det

Threat,

DetHTNP︷ ︸︸ ︷
f det
AbstrTask,

DetTTAP︷ ︸︸ ︷
f det
TempInconsistency, f det

OpenTmpBind,

DetRTAP︷ ︸︸ ︷
f det
ResInconsistency, f det

ResThreat},

{
ModTAP︷ ︸︸ ︷

f mod
AddOrdConstr, f mod

AddVarConstr,

ModPOCLP︷ ︸︸ ︷
f mod
InsertTask, f mod

AddCLink,

ModTTAP︷ ︸︸ ︷
f mod
AddTempConstr,

ModRTAP︷ ︸︸ ︷
f mod
AddResConstr, f mod

ExpandTask},

{
InfPOCLP︷ ︸︸ ︷

f in f
OrdConstraint,

InfTTAP︷ ︸︸ ︷
f in f
IntroTempVar, f in f

IntroTempDist, f in f
IntroOrdering,

InfRTAP︷ ︸︸ ︷
f in f
IntroResVar, f in f

IntroVarConstraint, f in f
IntroCLinkTemp},

Str〉

Theorem 3.15 (Properness of CPANDA). CPANDA is a proper system configuration in the sense of Def. 3.2.

Proof. With the inference function given in Def. 3.41 completeness of the detection function set DetPANDA

follows directly from Theorems 3.7 and 3.13.

ModPANDA is a semi-complete set of sound modification generating functions because the included subsets
are, and in addition, the revised task expansion is a sound modification generator that returns every possible
refinement.

The inference function set InfPANDA consists of sound members and is therefore sound itself.

Finally, the correspondence of ModPANDA and DetPANDA can be directly seen from the definition of the
αPANDA triggering function.

Theorem 3.16 (CPANDA is Modification-Complete). CPANDA is modification-complete according to Def. 3.3.

Proof. The proposition follows directly from Theorems 3.8 and 3.14.
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3.5 Discussion

3.5.1 General Comments

All system configuration presentations include a brief discussion of the relevant aspects in which they differ
from the state of the art techniques, respectively which established methods are incorporated. This discus-
sion section is dedicated to a number of inter-configuration topics and to some starting points for future
developments.

The previous sections started with motivational scenarios that were intended to illustrate the specific re-
quirements of planning-like applications. Our examples stemmed from the area of project planning in order
to provide demonstrative problem settings; the depicted (and referenced) software systems therefore have
to be viewed as example tools in the flavor of the respective configurations’ type of problems. It has to
be emphasized that these tools do not solve the described problems but give the human users an advanced
visual access to some features of the problem such that they can solve the problems by themselves more
easily. None of the commercially available software solutions supports a domain model representation that
is comparable to any planning or scheduling system.

3.5.2 Hybrid Planning

It is a key attribute of our approach that its notion of abstraction intrinsically couples the abstraction of
situations with the abstraction of (courses of) actions. The main advantage of this principle becomes ap-
parent in those system combinations that integrate hierarchical planning aspects with other techniques: the
integration effort is relatively small, because the abstraction mechanisms obviously apply transparently to
all domain model entities, particularly in advanced configuration extensions. It has to be pointed out that the
central element of the more sophisticated representations is the integrated, declarative treatment of causal-
ity.

Approaches like NONLIN [255], O-PLAN [258], SIPE [281], or UMCP [84], annotate causality handling
“rules” in their decomposition method definitions. SHOP [200] goes one step further and substitutes causality
by arbitrary conditions for validating method applicability. These procedural domain model constructs imply
two very serious issues concerning what we may informally call horizontal and vertical domain model
consistency. The horizontal consistency raises the question whether the decomposition method is applicable
at all and whether it is compatible with the other methods that are defined for the same abstract task, that
means, do they cover overlapping application situations, do they miss situations, and the like. Vertical
consistent methods “match” in some sense the abstract action they are intended to implement, which is
difficult to decide if no defined connection to the complex task exists.

In contrast to such a handling of causality, our hybrid planning configurations draw upon a well-found,
semantically sound, and transparent method concept. The declarative domain model thereby allows for
modular specifications in which causal relations can be validated during model construction as well as
for analyzing and properly manipulating the causal context of abstract actions during the plan generation
process.15

In the presented combination, situation abstraction and action decomposition do not only meaningfully com-
plement one another, they also manage to partly compensate the drawbacks of hierarchical planning as they
are discussed in the literature for the ABSTRIPS procedure [121]: For situation abstraction alone, we can
easily construct problem specifications that cause a poor performance of abstraction planners, in a way that
higher abstraction spaces contain no information about what caused backtracking at less abstract levels. Al-
though Giunchiglia’s arguments do hold for task abstraction based planning as well, it becomes considerably
more difficult to construct the corresponding anomalies, for the state abstraction hierarchies are interwoven
with task reduction schemata. In this way, action decomposition secures situation abstraction and vice versa.

15Our methodological roots in the partial-order causal-link planning paradigm stand, again, in the tradition of Greek philosophy when
mapping all system dynamics on explicit causal structures: “Nothing occurs at random, but everything occurs for a reason and by
necessity” (Democritus). “Some people question whether chance really exists. For nothing, they say, happens by chance, but there
is a definite cause, other than chance, for everything which we say happens ‘spontaneously´.” (Aristotle, Physics)).
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We can, of course, also construct domain models in which causal interdependencies are obfuscated by the
decomposition hierarchy. In fact, Sec. 5.2.3 will introduce such a domain for the definition of benchmark
problems for hybrid planning. But given a to some extend “reasonable” knowledge engineering phase, we
can expect to produce only in this sense benign hybrid domain models.

There is however a fundamental problem that hybrid planning configurations have to face: the co-existence
of task decomposition and plan step insertion necessarily induces a certain amount of redundancy in the re-
finement space. Since the plans that are created by applying decomposition schemata can also be synthesized
from atomic actions, symmetric and isomorphic solutions become a major issue that has to be addressed by
efficient search strategies. This is in particular relevant in situations where a troublesome plan synthesis can
be cut short by an appropriate task decomposition that solves the issue as a side-effect of the task implemen-
tation. On the other hand, it may be computationally more efficient to synthesize an implementation variant
rather than backtracking over the task expansion plan modification. Some authors also raise the question of
“user intent” [149], that means, whether or not all of the tasks are intended by the modeler to be inserted
by the system on demand. A similar question is that of premature task insertion as opposed to waiting until
all task expansion options are explored (this is related to the balance of task insertion versus causal link
insertion in POCL planning). Both problems are typically addressed by tagging task as “insertable” or by
annotating conditions as “to be achieved by any means necessary”. We agree that both techniques are clearly
motivated from an end user perspective, however we believe that they do not fit too well into the refinement
generation context but into the planning strategy instead. We understand this to be a question of solution
preference that is outside the scope of this thesis.

We finally would like to point out that with the above considerations, we do not regard the insertion of new
plan steps as a mandatory characteristic of hybrid planning. The hybrid character is already clearly given if
causality is propagated into the abstract action levels and consulted in goal satisfaction and threat analysis.
Since closing an open precondition is also handled by the insertion of causal links, a corresponding system
configuration CHYBP∗ keeps the properness and completeness results. This more HTN-like variant of hybrid
planning will be used as our reference configuration in an empirical study (Chap. 6).

3.5.3 Integration of Planning and Scheduling

The integration of planning and scheduling functionality has always been a major topic in the field, since
the need for an integrated treatment of in particular temporal aspects is evident in every practical applica-
tion. In addition to our focused presentation in Sec. 1.2.3, it should be mentioned that this integration is
in general classified into the categories of stratified, interleaved, and homogeneous planning and schedul-
ing [239]. While the first category subsumes the typical combination architectures, in which a planning
and a scheduling system work out their solutions separately (typically the result of one fed as input to the
other), our approach and in particular the PANDA configuration is an example for the interleaved integration
paradigm. That means, that the two subsystems’ algorithms are synchronized “stepwise” at a certain level
of granularity and are typically used as critics of each other. It is a thereby a unique feature of our approach
that there is no definite separation of subsystems and due to their shared representation of the refinement
space, synchronization occurs seamlessly and the system boundary is completely open. In fact, the planning
and scheduling subsystems even share several components. Homogeneous architectures go one step further
and apply the same calculus on the unified representation, for example, by formulating as a SAT or ILP
problem.

The main advantage that we see in an interleaved integration is that we can employ a natural representa-
tion of plans and corresponding refinement spaces as well as flexibly decide on the appropriate reasoning
method. By “natural” we mean manipulations to the human-readable plan data structure that can be in-
tuitively comprehended by humans, as opposed to, for example, value assignments in a propositional for-
mula set that may encode book-keeping artefacts such as decisions on plan step instantiations, and the like
(cf. [151]). Furthermore, since we rely on a configuration design that uses a meta-CSP representation, we
are able to incorporate any temporal, respectively resource model that appears to be appropriate for the
application.

A major topic in the context of scheduling models is certainly that of parallel actions. In the TTAP con-
figuration and its extensions, the partial order plan is regarded as an causality-centered abstraction of the
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plan. Given their flaw detection functions, our systems produce what Knoblock calls the class of plans with
actions that are independent relative to a goal [154]. In this sense, our CSP layers are free to decide about
the concrete temporal position of unordered tasks, because goal establishment is treated on the causal level
and any conflicting plan steps are ordered in the solution plan. However, (completely) independent actions
are not supported, because there may be conflicting task effects that are not used for any goal establishment
and are hence not ordered by the causal subsystem and remain as “parallel” plan steps. If this notion of in-
dependency is required, an additional class of causal threat flaw has to be issued that is implied to be solved
by an ordering constraint.

An alternative is to build the formal framework on action semantics that take parallel action threads into
consideration. A survey of relevant planning representations and reasoning techniques, including a charac-
terization of existing approaches can be found in [170]. Relatively popular are formal specifications that
are extensions of the situation calculus. Their means for expressing concurrency resembles our notion of
complex tasks, for example by interleaving compound actions that are built from primitive action specifi-
cations [15]. This interleaving semantics is also used on a continuous time base and for describing natural
processes, that means, physical phenomena, in planning models [220]. These representations are of course
not only found in the situation calculus but also in frameworks that are built on causal theory [120] or that
are mechanized in the ConGolog logic programming system [119]. Related techniques have also been intro-
duced into partial-order planning as designated concurrency conditions [36]. Such a meta-goal for achieving
state features simultaneously (or in any other specific temporal configuration) is not yet supported by our
configurations.

But, again, since we are interested in a natural representation and do not depend upon providing an integrated
calculus for our framework, we prefer constraint-based extensions to the causal plan. In doing so, we agree
with authors like [31], who conclude

Our results confirm that temporal reasoning is a sufficiently self-contained activity to be
implemented entirely independently of the overlying application, modulo some assumptions
about how problem-solving is to proceed. We have also shown that constraint-based temporal
reasoning supports a “least-commitment” style of planning and scheduling that is efficacious in
a wide variety of complex problem domains.

Of course, the most prominent representational issue of an integrated system is the employed temporal
model, and since temporal reasoning is central to many application domains and kinds of problems, there
is an endless number of approaches available (for a survey, see for instance [249, 276]). We decided in
favor of the Simple Temporal Problem (STP) representation [71], a simpler version of the more general
Temporal Constraint Satisfaction Problem, because it is a reasonable trade-off between expressivity and
efficiency. It can not only be solved in cubic time by applying Floyd’s well known all-pairs-shortest-paths
algorithm, it can also be dealt with incrementally, for example, by retracting constraints and repropagating
the network locally [51], which makes it a very efficient and practicable method for the application in a
dynamic scenario (dynamic in the sense of recomputing the network during consecutive refinements). As we
have noted in the domain model specifics section of the temporal planning configuration (Sec. 3.3.2), using
STP as a foundation for temporal reasoning has been successfully demonstrated in a number of planning
systems, for instance, in IXTET [116, 163, 266], parcPLAN [81], the SIADEX HTN planner [42], the RAX
Planner/Scheduler [142], and VHPOP [297].

It is also worth noting that we are not necessarily restricted to the convex STP representation. During
the plan generation process, and in particular concerning abstract task refinements, disjunctive temporal
constraints would be a very useful mechanism to explicitly represent ambiguity. For example, a task imple-
mentation may either take a very long time in the morning or may be done very quickly in the afternoon.
This increased expressiveness demands of course a significantly more complex reasoning process, but on
the other hand this additional effort stays manageable [235]. The so-called disjunctive temporal graph
has been developed as an efficient reasoning technique in this context [109], which has been applied as a
meta-CSP in a temporal partial-order planner [175] as well as an augmentation for a planning-graph based
system [112].

A popular alternative for modelling temporal phenomena is to assign the concept of duration not to the ac-
tions but to the states. In this view, temporally extended actions are interpreted via states that persist for a
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specified amount of time and then instantly change. While this model may offer some practical advantage re-
garding computational aspects, it is however not adequate with respect to our semantics, because it would im-
ply that during a state the interpretation of the time constant (continually) changes.

Reasoning about time can be based on two temporal primitives, namely instants (points of time, which
is our representation) and periods (intervals of time). The latter is historically of particular interest to
the field of AI planning, because the interval algebra introduced by Allen [5] is a well understood cal-
culus for qualitative temporal reasoning, which suggested itself for extending the classical planning ap-
proaches.

Allen’s approach to reasoning about time is based on the notion of time intervals and binary relations on
them. Given two concrete time intervals, defined via real numbers denoting their end points, their relative
positions can be described by exactly one of thirteen atomic interval relations, for example, equivalence,
precedence, succession, strict and partial inclusion, and the like. From these atomic interval relations, 213

possible union sets can be constructed, which form the set of binary interval relations. This set forms together
with the operations intersection, relational converse, and relational composition the mentioned interval alge-
bra. In this algebra, we may construct formulae like the composition of “interval A precedes interval B’ ’ and
“B strictly includes interval C”, which implies the formula that “A precedes C”.

A qualitative description of an interval configuration is usually given as a set of formulae of the above form,
or, equivalently, as a temporal constraint graph with nodes as intervals and constraint arcs labeled with
interval relations. The reasoning problem is to decide whether the configuration description is satisfiable,
that means, whether there exists an assignment of real numbers to all interval endpoints that are consistent
with the constraints; this problem is known to be NP-complete. The most often used method to determine
this kind of satisfiability is the path-consistency method [5] in which repeatedly the compositional closure
of the binary relations is computed. If that closure contains an empty binary relation, the configuration is
obviously not satisfiable; the converse implication is not valid, however.

However, there exist subsets of the interval relations such that if the configuration descriptions are restricted
to this subset, the reasoning problem’s complexity level drops down to a polynomial one. These subsets
are known as the continuous endpoint class, the pointizable class [272], and the ORD-Horn class [205].
These classes do not only lead to a gain in performance but lead also to completeness of the efficient path-
consistency method [203].

Concerning the temporal action model, we employ a view on temporal reasoning that employs a subsystem
in the fashion of a black box: Time change happens at the end of the durative interval. This kind of interpre-
tation of temporal information can be found in the well-known temporal GRAPHPLAN extension TGP [241]
and many more. We believe that we have motivated this semantic design choice sufficiently, however would
like to discuss the alternatives briefly.

Many researchers were unsatisfied with the idea of actions that are somewhat “undefined” during the inter-
val of their execution. This is true to some extent: According to our semantics, there is no possibility to
evaluate the interpretation of any state feature between two states, because that would imply the existence
of a third, an intermediate state and hence contradict the notion of actions as atomic state transitions. How-
ever, on second thought, this is not an issue because first, the temporal information is interpreted outside the
state transition model and second, we can build on these atomic transitions and formulate abstract ones, for
which the concept of “intermediate” steps naturally exists. The presence of abstract actions and their corre-
sponding implementations gives us the means to model a variety of phenomena without the restrictions of
non-hierarchical planning. Furthermore, we would like to note that we are inclined to believe that perceiving
atomicity as a deficiency tends to indicate a misconception of the semantic basis of planning domain models
such that formal properties are confused with issues that arise when constructing appropriate representations
of the application domain.

The following quotation taken from the temporal PDDL specification [99] supports our claim:

A simplistic way of ensuring correct action application is to prevent concurrent actions that
refer to the same facts, but this excludes many intuitively valid plans.
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In order to refine the granularity of temporal information about an atomic action, more “sophisticated”
approaches allow preconditions to be annotated with time points or intervals, so that the requirement that
a condition be true at some point, respectively over some interval, within the duration of the action can be
expressed [72]. Effects can be treated analogously (delayed effects [11]) and it thereby becomes “possible
to distinguish between conditions that are local to specific points in the duration of an action and those that
are invariant throughout the action” [99]. The incoherency that is introduced by the coexistence of a notion
of an atomic actions as singular state transitions together with the technique of splitting up actions along
the time line (cf. PDDL action triples discussed in introduction of Sec. 3.3.2) does not only lead to some
confusion among the researchers (cf. discussion in Sec. 2.8.1) but also to artefacts regarding the encoding
of domain models: “However, invariants cannot be specified because the preconditions are checked at the
instant of application and subsequent delayed effects are separated from the action which initiated them”
(ibid.).

Concluding the discussion about representation alternatives, it has to be emphasized that in principle, any so-
phisticated temporal or resource model could be deployed as a substitute for the current ones. The substitutes
may range from any of the previously mentioned representational frameworks to functional dependencies of
task parameters or even fuzzy temporal intervals [45] and probabilistic models [25]. The only requirement
of the refinement planning paradigm is that the deployed technology complies with constructive search, that
means in particular, that it is not based on local search like in repair-based scheduling, etc. If we are fur-
thermore interested in maintaining completeness (see discussion in Sec. 2.8.5), the generated modification
proposals have to cover the option range completely and they preferably have to do so in a compact man-
ner. The presented configuration is therefore focused on narrowing down the respective intervals in order to
separate inconsistent assignments as early as possible, complemented by a mechanism that blindly guesses
values in the (probably consistent) intervals.

This discussion solely focuses on representational issues and does not consider another dimension of tempo-
ral planning that became a major topic in the context of the planning competitions: Is the reasoning method
capable of finding a solution – effectively or efficiently – for really temporal planning problems [67, 69].
Since the authors’ arguments for classifying the temporal problems are formulated in terms of the influence
that the temporal dimension has on the solution quality (as opposed to problems in which the temporal infor-
mation is more or less “syntactic sugar”), we subsume this question in the general optimization discussion
below (Sec. 3.5.5).

3.5.4 Hybrid Planning and Scheduling

Although the successfully fielded planning systems are dominantly hierarchical ones (cf. introduction p. 13)
the integration of time and resources rarely includes the notion of abstraction corresponding to the one that
is introduced by the action hierarchies. We believe that this is due to the weak semantic foundation for
grounding abstractions; practically all hierarchical systems restrict their view on complex tasks and their
implementations to the notion of procedures or macros, which, like in a simple programming language,
allow for organizing code or for expressing recursive structures.

As a consequence, those approaches that may qualify as related to our PANDA configuration solely fo-
cus on integrating temporal information on the higher abstraction levels. An abstract task is thereby un-
derstood as the temporal wrapper structure that under-estimates lower bounds and over-estimates upper
bounds [45].

The approach presented in [61] propagates bound estimators, so-called “summarized information”, from
primitive action specifications up the decomposition hierarchy. This methodology could be combined with
the presented user specified approximation abstraction, for example in those cases in which no approxi-
mated resource usage is explicitly specified. We note that the method of summarized information relies on
completely specified models for “classical” hierarchical task network planning in which no additional tasks
appear like they do in hybrid planning.

Our concept of relating task abstraction and approximated resource manipulation can be found in the notion
of abstraction as it is described in [68]: These authors also understand abstraction as a kind of precise dis-
cretization. The contrary, non-declarative approach is realized in the SHOP2 system: Durative actions can be
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modelled via manually specified updates of a clock object [123]. A specific translation schema is then for-
mulated to simulate the respective PDDL temporal triples. There is however no further semantic connection
between the execution intervals on the different levels of abstraction, which makes, as the authors say, “deal-
ing with the temporal variables in larger problems [...] somewhat cumbersome”.

Completely orthogonal to our abstraction representations and reasoning methods is the notion of hierar-
chical resources in the temporal planning system IXTET. In this approach, a resource is regarded to be
more “important” than another, that means, it is located above the other in the hierarchy, if the manipula-
tion of one implies the manipulation of the other. The hierarchy of importance thereby implies the order
in which the various resources should be addressed by the reasoning process. This implicit dependency of
resources is induced by the action schemata and the corresponding hierarchy can be constructed dynami-
cally, based on condition analysis in the current partial plan [104]. This technique proved to be extremely
efficient and since it is perfectly compatible with our formal framework semantics on the one hand, and
with our view on independent refinement generators on the other, it will be considered as an additional
strategic advice in future implementations of our proposed approach (in particular CRTAP and its exten-
sions).

The presentation of the respective sections is loosely based on our previous work, in which we devel-
oped the idea of resource hierarchies [232] and the integration of hierarchical planning and scheduling
[233].

3.5.5 Perspective

Our perspective on future developments can be roughly divided into two threads: extending the currently
defined system configurations and creating new configuration concepts.

Configuration Enhancements

While the reasoning algorithms are completely robust with respect to implicit information stored in the
various constraint sets, the human user is typically not. In order to make the (intermediate) results of
the actual configuration implementations easier to read and to comprehend for a human user (cf. future
work Sec. 7.2.2), we propose two inference functions for simplifying the variable and ordering constraint
sets.

We do not want to detail these inference mechanisms but only briefly present the idea: A constraint is
subsumed by other constraints if it does not contribute to a restriction of variable values. For instance,
once a variable is assigned a constant value, the variable is substituted in all constraints by the respective
constant and all co-typings and non-cotypings are removed from the constraint set. Finally, the trivial
inequations (different rigid constant values denote different objects) are removed as well. Another example
is co-typing, which implies the removal of all co-typings that refer to a super-sort. In this way, a canonical
representation of the constraints can be reached that offers an easy access to the inferential closure of the
constraint set and that is substantially smaller. The same principle can be applied to ordering constraints as
well.

A similar functionality may also be useful for the temporal and resource constraints. Such an inference
would not only clear the subsumed constraints but would also remove artefact variables, if possible, since
these have no correspondence in the partial plan steps and are therefore hard to explain to non-specialist
users.

Concerning partial-order causal-link planning and all its extensions, the insertion of plan steps raises the
question of how to control the addition of plan steps. Most of the modern approaches are based on tech-
niques that focus on plans of a given length and are therefore producing solutions with an optimal number
of plan steps. Planning by search in the space of partial plans does however face the problem of recursion,
that means, the more or less same plan step is to be added repeatedly, and it has to be decided whether
this chain is developed purposefully or not [240]. A prominent example for reasonable recursion is trav-
elling: moving from point a to point b may require to visit some point c in between, which may in turn
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only be reachable from d, and so forth. An example for a recursion that has to be cut off is opening a
door that has to be closed in order to be opened and that has to be opened in order to be closed; this is
a futile development that will either turn out to fail in an inconsistent refinement or lead to an infinite16

plan development. Although a form of recursion detection may be implemented by a corresponding detec-
tion function, the proper handling of this flaw has to be addressed by suitable planning strategies (see the
following chapter 4).

Giving scheduling a more active role in the system configurations will be a high priority topic in future re-
search. Building optimizing system configurations is not only a matter of search strategies but also includes
providing suitable refinement options, in this case optimality-driven interval reductions for the temporal and
resource constraints. Although the presented configurations do not take optimality aspects into account, we
are convinced that only small, local changes to the modification generating functions of the CTTAP and CRTAP
configurations can realize a refinement generation process that is “biased” towards more valuable solutions.
To this end, our next developments will try to integrate the above described techniques from IXTET resource
hierarchies and time-optimal plan generation heuristics, for example generating a relaxed planning graph in
the fashion of [105, 106]17. This will be probably also involve giving up completeness of the refinement
options and is therefore beyond the scope of this thesis.

The last enhancement concerns the temporal representation for which it would be worthwhile to develop
abstraction mechanisms like for other resources. Reasonable candidates would be approximation and qual-
ification for dealing with different levels of temporal granularity on different levels of abstraction. An
example would be approximating concrete time points by discrete hour slots or qualifying a time interval by
“in the morning”. Relative to the granularity level, different thresholds could be defined for discriminating
temporal phenomena, for example all abstract tasks would happen simultaneously on Monday morning, but
sequentially every full hour on the primitive level.

Dynamic Configurations

This chapter has presented a number of system configurations and discussed numerous deviations from
and optional components of these configurations, including the strategy that has been treated as a fixed
but exchangeable entity. In particular in the resource and time aware configurations there will co-exist a
number of alternative configuration components that may address special cases of problem specifications
or that may provide very efficient solutions to specific (sub-) problems. Examples are efficient solvers for
particular problem classes, for example, modification generators that are able to compute very time-efficient
travel plans.

These specialist configuration components lead to the idea of dynamic configurations, that means, configura-
tions in which components are altered during the run time of the refinement planning algorithm. On the one
hand, these may be problem-specific configurations like the ones described above, on the other hand, these
may be progress-specific configurations: The beginning of the plan generation episode deploys a different
set of configuration components than the system requires when it comes closer to a solution. For example,
constant assignments are typically not adequate to start with and should be therefore “switched off” until
the plan reached a certain level of maturity.

With our definitions of sound configurations, realizing a dynamic configuration change is more a question
of how to initialize the change. We could define soundness criteria for performing a change, for example,
at least a criterion like “sound configurations can always be changed into sound extensions”. More general,
every type of change has to guarantee that the structure of the refinement space is never compromised.
This may include associating refinements with configurations, such that the partial plans in all kinds of
backtracking scenarios are coherently treated by the configuration that operates on the respective branch in
the search tree.
16Since we deal with natural models only, infinite is here meant in the sense of a plan development that finally fails due to memory

limits or because all task expression label symbols have been used.
17This approach to time-optimal planning, that means, generating plans with minimal duration, modifies the GRAPHPLAN representa-

tion of action and fact levels such that time points are assigned to the levels at which these levels happen, respectively are observable.
Since GRAPHPLAN is able to produce maximum parallel plans, the duration of the solutions is minimal.
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One major benefit of dynamic configurations is finally the realization of refinement-based hybrid plan-repair
in this formal framework. Sec. 7.2.1 describes how a plan is first developed by a regular configuration,
then disassembled by a configuration that isolates execution failures, and finally reconstructed by a regu-
lar configuration with a strategic component that tries to restore as much of the previous commitment as
possible.

3.6 Summary and Conclusion

This discussion concludes the chapter on system configurations, the incarnations of the formal framework
that we have developed in Chap. 2, which make a generic refinement planning algorithm operational and
eventually define the structure of the corresponding software artefacts. We have presented the concepts
for building meaningful combinations of flaw detectors, refinement option generators, auxiliary inferences,
and strategy components, that means, for building proper and modification-complete system configurations.
They are the foundations for an extremely modular system setup, in which on the one hand functionality can
be easily added in a plug-and-play fashion, but that is on the other hand well-defined and guarantees that the
semantic integrity of the explored refinement space is never jeopardized.

An important result of our theoretical considerations about system configurations is the idea of extending
configurations, that means, systematically enhancing the functionality of configurations. Based on this
extension concept, we have developed a hierarchy of configurations, in which simple base configurations are
progressively extended into implementations of our refinement planning framework that perform standard
partial-order planning, hierarchical task network planning, and scheduling.

The standard configurations are first and foremost reference realizations of well-known functionality. Thereby,
they demonstrate the flexibility of our approach, which is able to bridge the gap between the major disci-
plines in the field. But we have also gone one step forward and presented extensions of the standard im-
plementations that produce hybrid systems. The configurations for hybrid planning and hybrid planning
and scheduling, the main results of this chapter, combine hierarchical and non-hierarchical methods, com-
bine causality-oriented planning and resource-focused scheduling in a seamless and well-founded way like
it has never been done before. Within one unified representation, in terms of the domain model entities
and the refinement space operations, the system architecture and its strategies are free to opportunistically
develop plans (i) across different levels of abstractions as well as (ii) switching between the planning and
the scheduling paradigm.

We discussed for each configuration its typical application scenarios, its domain model specifics, and all
relevant reasoning issues. In particular, we would like to point out that in the final PANDA configuration, a
cross-breed between hybrid planning and scheduling, we introduced the novel concept of abstract resources
and the corresponding hierarchical scheduling methods.

Now that we have developed the mechanics for addressing different kinds of planning problems in our
refinement planning framework, the following chapter focuses on search control in the refinement space. It
provides us with the strategic support to effectively utilize the system configurations. We will revisit the
hybrid planning configuration CHYBP later in Chap. 6 where it will serve as a benchmark configuration for
some of our planning strategies in an empirical evaluation.
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4 Planning Strategies – Search Control in the
Refinement Planning Framework

THIS chapter focuses on a systematic introduction of practical realizations of the selection functions
concept in the refinement planning framework (Sec. 2.6.4). It will present a broad assortment of
planning strategies, ranging from adaptations of established work in the field to completely novel

and powerful techniques. It is not only intended to demonstrate the individual procedures but also to detail
their theoretical basis and their application perspective. A special emphasis is also given to provide de-
ployment guidelines for strategies in general. Please keep in mind that all presented strategies are, by their
design, applicable in all previously presented system configurations.

As it has been introduced in the previous sections, our framework does not employ one single strategy entity
but it divides the sphere of responsibility into the selection of the refinement options and into the selection
of the path that is to be followed in the refinement space generated by the options. In this chapter, we want
to go one step further into a modular and systematic construction of planning strategies – in contrast to
many approaches in which “the strategy” appears as a concealed oracle-like component that encapsulates its
computations and finally reaches a decision. Note that this decision has to be proven with hindsight to find a
solution in a structured and valid way. Our framework design explicitly answers these questions beforehand
and developers can concentrate on the search heuristics in isolation.

The modular composition of the refinement planning framework is also reflected in the definition of plan-
ning strategy functions. Modification and plan selection functions impose a partial order on the respective
input options and hence these functions are suited for a sequenced arrangement. Subsequent functions can
be utilized to modulate preceding decisions by transferring all consistent additional orderings, thereby re-
inforcing the accumulated partial order. In other words, if the primary strategy does not prefer one option
over the other, the secondary strategy is followed, and so on, until finally a random preference is assumed1

by the linearization function of the refinement planning algorithm (Alg. 2.2, lines 22 and 24). Figure 4.1
shows an example sequential composition for three selection functions. The application of the first function
divides the presented options in three equivalence classes. Within these equivalence classes f1 is undecided,
and in the example the subsequent selection f2 is able to subdivide the first and third equivalence class, and
the finally consulted third strategy can contribute with two more partitions. More formally, the sequential
composition of modification and plan selection functions is defined as follows:

Definition 4.1 (Sequential Composition of Strategies). Let f modSel
a and f modSel

b be two modification selec-
tion functions. The function obtained by composing them sequentially, denoted by f modSel

a . f modSel
b , is a

modification selection function such that mi < m j ∈ f modSel
a . f modSel

b if and only if

1It is an interesting fact that retaining a specific order of processing flaws or modifications (LIFO vs. FIFO, etc.) has been discussed
frequently, for example in [218,236] while our approach does not only include a random element but in addition does not necessarily
retain the order of plans in the fringe (and that roughly corresponds to the discussed issues). The reason for this decision is that we
agree with authors like Williamson and Hanks [288], who pointed out that the planning procedure becomes highly sensitive to the
order in which operator preconditions are specified in the domain description, and the like.

f1 f2 f3

Figure 4.1: The sequential composition of strategic selection functions.
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1. mi < m j ∈ f modSel
a or

2. m j < mi 6∈ f modSel
a and mi < m j ∈ f modSel

b

In a sequential composition f modSel
1 .. . .. f modSel

n we call f modSel
1 the primary strategy and the others f modSel

2 .
. . . . f modSel

n the subsequent strategies.

Sequential compositions of plan selection functions are built accordingly. •

From the definition of sequential composition it follows directly that a composite strategy can be deployed in
a system configuration without any change to the refinement planning algorithm.

The following sections present in this sense a “catalogue” of planning strategies that have been realized so
far in our refinement planning framework. All of them are single-objective heuristics and are intended to
constitute the building blocks for more sophisticated strategies in (sequential) compositions. The presenta-
tion is organized according to selection principles; therefore, modification and plan selection functions are
treated in alternation.

4.1 Strategy Components

The component catalogue begins with the classical strategy principles of un-informed search and simple
plan evaluation heuristics. We proceed with strategy components that operate on the concrete flaw and
modification situation of plans and show how such functions can be generalized from inflexible partial-
order planning tactics to flexible general-purpose strategies. The section concludes with a presentation of
our latest developments, the so-called HotSpot and HotZone technology. Both are universally successfully
applicable heuristics for the refinement planning algorithm.

4.1.1 Search-Space-Based Strategies

One principle of selecting plans that suggests itself is to choose the first or last plan in the fringe. The
two corresponding plan-selection functions are called f planSel

First and f planSel
Last , which are the usual un-informed

depth-first and breadth-first search schemata. They are defined as follows:

Pi < Pj ∈ f planSel
First (P1, . . . ,Pn) for 1≤ i < j ≤ n (4.1)

and
Pi < Pj ∈ f planSel

Last (P1, . . . ,Pn) if i = n or 1≤ i < j < n (4.2)

Both function definitions preserve the ordering of the fringe as it is induced by the respective modification
selection function. Note that no subsequent selection can contribute because the plans are returned com-
pletely ordered. Deploying any of the two strategies consequently shifts search control completely towards
the modification selection.

An alternative plan selection with a flavour of depth-first behaviour is the f planSel
LongerHistoryFirst function. This

selection function prefers plans that have been obtained by a longer sequence of modification applications.
It thereby considers not only refinements issued by modification generating functions but also inference
steps. The rationale for such a selection function is to focus on plans that are more elaborated than others
and it is typically used as a subsequent component in a composed strategy. How to realize the inverse func-
tion, that means, avoiding long refinement-paths and thereby adding a “breadth-first” flavour to a strategy
composition, will be discussed below in Section 4.1.6.

It is worth noting that if the depth-first style schemata should fail to produce a solution in a reasonable
amount of time, they can easily be modified into an iterative-deepening search strategy [157]. All that the
strategies f planSel

First and f planSel
LongerHistoryFirst need is an additional parameter representing the maximal depth that

is taken into account when the favoured plan is determined.
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Many metrics have been proposed in the literature that are estimating the maturity of a partial plan. The
obvious components for computing a numerical value out of a plan’s symbolic representation is the size of
the constraint sets and in particular the number of plan steps (since introducing an action implies “plan-
ning effort”). A very simple but effective plan-selection function that represents such a plan metric is the
following definition:

Pi < Pj ∈ f planSel
ConstrPlans(P1, . . . ,Pn) if

| ≺i |+ |VCi|+ |CLi|
|TEi| >

| ≺ j |+ |VC j|+ |CL j|
|TE j| (4.3)

The idea behind this plan selection function is to focus on plans that are more constrained than others and
that are therefore more likely to either get completed or turn out a failure.2 Since in general such processed
plans tend to get processed again, it is more of a depth-first search but it is less vulnerable to getting trapped
in useless plan refinement paths of repeated task-insertions (for solely inserting tasks reduces the heuristic
value). Controlling the size of TE is in general an important factor when dealing with configurations that
allow the insertion of new tasks. It has to be noted that there exists a large number of similar metrics that
develop a set of weights for the different plan components, for instance, factors for emphasizing the influence
of causal links, and the like. Conducting experiments with suchlike parameter families in which suitably
balanced values are to be determined is however out of the scope of this thesis.

4.1.2 Flaw- and Modification-Based Strategies

All plan-generation algorithms that operate on the plan space have to deal with the notions of plan defi-
ciencies and refinements. Although none of them does so in an explicit way like in our approach, these
systems nonetheless assess the current flaw situation and seek to perform suitable plan modifications – the
flaw assessment and refinement selection is however embedded (sometimes even deeply buried) inside the
algorithmic procedure. As a consequence, thereby implicitly defined strategies adhere to a systematic way
of developing plans that we refer to as inflexible planning strategy: following a selection schema that is
solely based on a pre-defined strict preference on implicitly given plan-deficiencies and refinements. In our
framework, inflexible planning strategies translate into preference relations on flaws and plan modifications,
respectively on the plans that impose particular constraints on flaw detection and modification generation
results.

A traditional form of modification selection is either to prefer or to disfavor categorically specific classes
of plan modifications (see also discussion in Sec. 4.2). For example, one can prefer the expansion of com-
plex tasks over the insertion of tasks or one tries to avoid the assignment of variables to constants “as
long as possible”. System implementations with built-in strategies of the previously described category
are typically equipped with hand-tailored heuristics such that certain plan properties imply a modulation
of the preference schema (for instance, the presence of a causal threat over-rules the preference of task
expansion), but for the time being we focus on singular, un-modulated modification-based forms of deci-
sions.

In the presented framework, a preference of a modification class can be encoded as follows: Let MP be
the modification class that is to be preferred by a modification-selection function, then the corresponding
strategy f modSel

Pre f−MP
is defined as follows:

mi < m j ∈ f modSel
Pre f−MP

(P,{f1, . . . ,fm},{m1, . . . ,mn}) if mi ∈MP and m j 6∈MP (4.4)

for all plans P ∈ P , sets of flaws f1, . . . ,fm ∈ F, and sets of plan modifications m1, . . . ,mn ∈ M. The
inversely defined function, that means, avoiding the selection (and consequently the application) of in-
stances of particular modification classes, appears to be useful in some strategy combinations. Please
note that MP can also be specified as the union of more than one base class, for example MP = MPa ∪
MPb .

2This procedure is resembles the Davis-Putnam procedure (DPLL), which has been originally proposed for solving satisfiability
problems in propositional logic. It became an established technique for solving constraint satisfaction problems because it gains
considerable performance through the computationally simple heuristic of dealing with the most constrained variables first.
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A modification class preference can also be reflected in the plan selection function. This realizes a plan-
space navigation that is based on the availability of preferred refinement options for a plan. Please note
that for the simplicity of presentation, algorithm 2.2 performs three consecutive sections: a first loop for the
flaw detection, a second one for the modification generation, and finally a third loop in which the strategic
choices happen. In the actual framework implementation, after applying the selected plan modifications
to the current plan (line 20), the flaws and modifications are calculated for every new plan in the fringe in
advance. That means, that the detected flaws and available plan modifications are accessible at the strategies’
computation time. As a consequence, the following plan selection function can be defined for expressing a
preference on a specific modification class MP:

Pi < Pj ∈ f planSel
Pre f−MP

({P1, . . . ,Pn}) if |mods(Pi)∩MP|> |mods(Pj)∩MP| (4.5)

The function mods : P→ 2M is thereby used to retrieve all plan modifications that have been published for
a given plan in the respective modification generation phase of the algorithm.

The previous plan-selection function can be re-formulated alternatively in terms of a relative measure, in
contrast to an absolute number of refinement options. One of our defined measures calculates the proportion
of “desired” plan modifications of type MP against un-desired ones.

Pi < Pj ∈ f planSel
Pre f−MP/M({P1, . . . ,Pn}) if

|mods(Pi)∩MP|
|mods(Pi)| >

|mods(Pj)∩MP|
|mods(Pj)| (4.6)

There exist subtle particularities that have to be taken into account when applying the above absolute and
relative modification measures to plan-space navigation. On superficial examination, both types of strategies
differ substantially: While any relative measure prefers to maneuver in the direction of plans for which
supported refinements dominate, absolute selection functions favor plans with a large number of specific
refinement options, notwithstanding that these alternatives may constitute only a minority of the available
options. Which effect is the desired one depends on subsequent strategic components, that is to say, the
next modification selection or the subsequent plan selection: if a plan is dominated by a class of plan
modifications, other choices of refinement get to be restricted and it becomes more probable that one of the
preferred options is eventually selected. The absolute measure on the other hand seeks to broaden the choice
for subsequent decisions, because it opts for a larger and hopefully properly weighted collection of options.
It is worth noting at this point that although an absolute modification type preferring measure inherently
produces large sets of successor plans, subsequent strategies may profit from the broader data base for their
performance.

In the above view, even though both measure types are not precisely antithetic, they pursue opposite lines.
A closer examination however reveals that both types of measure exhibit an identical and particularly un-
pleasant long-term behavior: modification-type preferring plan selection functions intrinsically postpone
well-developed plans, especially nearly-solutions. With flaws being resolved, their associated plan modifi-
cations are not published anymore. The successors of the selected plan thereby become less attractive for the
selection function in subsequent decision points until finally no plan in the fringe features any modification
of the preferred type. At this point, however, the described functions offer no strategic advice and become
irrelevant with respect to finding a solution. It has to be noted that even inverse definitions of these strategies
are dead ends: Avoiding plan modifications leads to a situation where all plans in the fringe are a collection
of not-yet solutions to which a number of plan modifications (of the avoided class) is still to be applied
– given that the refused modifications do contribute to a solution. At this point the planning algorithm is
deserted by the strategic advice and has to select randomly.

For the reasons mentioned above, the selection schemata degenerate into a breadth-first type of search, thus
exhaustively traverses the refinement space; any modification-based plan selection function (alone) will
therefore not contribute strategically in a reasonable way.

Another relative measure relates the number of preferred plan modifications to the plan size, that is to say,
to the number of plan steps.

Pi < Pj ∈ f planSel
Pre f−MP/TE({P1, . . . ,Pn}) if

|mods(Pi)∩MP|
|TEi| >

|mods(Pj)∩MP|
|TE j| (4.7)
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Given the arguments in the previous paragraphs, this variation is also afflicted with the problem that it may
traverse the plan space towards a point of indifference. But the normalization terms are worth a second
thought: if we assume that the domain model is concise, then the size of the set of task expressions is non-
decreasing on any path in the refinement space.3 If we furthermore assume that in the long run the number of
plan modifications decreases, not to speak of the preferred modification class instances, then the normalized
measure will necessarily decrease for more developed plans. These considerations indicate that an inverted
preference may be a reasonable subsequent strategy.

Strategies that concentrate on the flaw situation rather than on the available refinement options are con-
sidered to be more “problem-oriented”. They are typically found in agenda-based planning algorithms,
for instance the O-PLAN architecture [65], the goal ordering in the IPP planner [160], or the flaw han-
dling in IXTET [163]. These systems have in common that they collect the plan defects and then de-
cide which one to tackle first. Let FP be the preferred class of flaws and let modsFor : F×P → 2M be
the function that returns all modifications that have been answered to a given flaw in a given plan. A
modification-selection strategy-function for preferring refinements that address flaws of class FP is then
defined as:

mi < m j ∈ f modSel
Addr−FP

(P,{f1, . . . ,fm},{m1, . . . ,mn})
if mi ∈ modsFor(fa,P), m j ∈ modsFor(fb,P) and fa ∈ FP, fb 6∈ FP

(4.8)

It is again to be noted that FP can also be specified as the union of more than one base class, for example
FP = FPa ∪FPb .

Lifting the flaw-orientation principle to the selection of plans provides system configurations with an esti-
mation of the difficulty of making the current plan a solution in terms of the number of plan modifications
that will have to be applied. The definition of a plan selection function that prefers those plans that are
flawed by many instances of a given class FP is the following:

Pi < Pj ∈ f planSel
Addr−FP

({P1, . . . ,Pn}) if |flaws(Pi)∩FP|> |flaws(Pj)∩FP| (4.9)

With flaws : P→ 2F being the function that retrieves all flaws that have been issued for a given plan.

Unfortunately, the flaw-oriented plan selections basically face the same drawbacks that we discussed above
for the modification-oriented strategies. Having said that, since in general a large number of open issues in a
plan will most likely require a large amount of plan manipulations, an inverted flaw-oriented plan selection
can be reasonably deployed in order to navigate towards more “worked-out” plans. The heuristic however
inconsistently under- and over-estimates the remaining costs, so the quality of this kind of estimation alone
is not too reliable. This is because plan modifications may address several flaws at a time, which makes
the function less informed, and that refinements may introduce new flaws, which spoils the function’s ad-
missibility. Besides these considerations, it has to be kept in mind that f planSel

Addr−FP
may be used (positive, not

inverted) as a profitable subsequent strategy element, as it may make sense to look into plans that offer more
choices.

A flaw-centered plan selection can also be formulated as a relative measure, analogously to the modification-
based counter-part strategies. Normalizing the preferred subset of flaws with respect to all fellow flaws
grounds the estimation of future costs during phases of the solution development in which the fringe bears a
large variety of deficiency situations:

Pi < Pj ∈ f planSel
Pre f−FP/F({P1, . . . ,Pn}) if

|flaws(Pi)∩FP|
|flaws(Pi)| >

|flaws(Pj)∩FP|
|flaws(Pj)| (4.10)

Like for the modification-based selection f planSel
Pre f−MP/TE we can also relate the number of occurrences of

a preferred flaw class FP to the number of plan steps. The rationale for this method is that the size of
the plan is considered to represent an amount of planning work done, now put in perspective to what

3Domain model conciseness (see Def. 2.8) implies that there exists no refinement for a plan that “merges” a group of task expressions
into one single task schema instance. Hence, the number of plan steps remains at least constant from refinement to refinement,
independent of the deployed system configuration.
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still has to be done. In this way, the strategy is more retrospectively estimating how elaborated a plan
is.

Pi < Pj ∈ f planSel
Pre f−FP/TE({P1, . . . ,Pn}) if

|flaws(Pi)∩FP|
|TEi| >

|flaws(Pj)∩FP|
|TE j| (4.11)

Some general remarks regarding flaw-centered plan selections: We cannot recommend a preference selection
based on flaw types, because these strategies select plans on the occurrence of deficiencies that are finally
solved. After applying a plan modification, the flaw situation typically changes such that the addressed flaw
is eliminated and (if at all) new types of deficiencies arise. It is therefore very probable that flaw-centered
selections loose track of these new refinements and switch back to the clique of the previous decision point,
and this behaviour resembles an exhaustive breadth-first schema. They cannot give any advice beyond a
certain point in the search space and the planning system has to operate randomly until a preferred flaw
emerges among the refinements. They may however contribute as consecutive strategy components in order
to provide preceding components some options that are free of the focused flaw class. In this sense, the
flaw-oriented strategies can be labelled as “selective breadth-first” strategies and constitute an alternative to
the history-aware selection function defined above.

A similar line of argument holds for the applicability of inversely defined flaw-oriented plan selection func-
tions. Primary strategies that favour fewer occurrences of a specific flaw class, either on an absolute or
relative measure, face the problem of becoming obsolete on all refinement paths in which the avoided flaw
class appears. If solving the planning problem is intrinsically connected to solving such deficiencies (and
there is practically no flaw class that can be avoided in general), then the strategies build up the refine-
ment space until all plans in the fringe carry flaws of the avoided class. But, if deployed as a subsequent
strategy, the relative flaw avoidance may bridge the strategic gap in cases where preceding strategies are
undecided: the composed strategy may then focus on refinements that have overcome a certain deficiency
and are therefore closer to a solution.

If (some of) the flaw classes are known for the configuration at hand, more specific estimates for the current
state of plan development can be given. From the partial-order planning literature comes a set of plan
selection functions that embody heuristics for an A∗ algorithm [129], originally intended to perform node-
selection in the UCPOP system.

Gerevini and Schubert proposed in [113,236] to relate the size of certain plan component sets to specific plan
deficiencies. They identified two very effective strategies called S+OC and CL+OC. According to the usual
definition of the A∗ heuristic function as f (n) = g(n)+ h(n), that means, the sum of actual and estimated
future costs, these functions use the number of open preconditions as the estimating term (OC) and the num-
ber of plan steps (S), respectively the number of causal links (CL) as the actual cost term. In our framework,
the two strategies can be directly transcribed into the plan selection functions

Pi < Pj ∈ f planSel
S+OC (P1, . . . ,Pn) if

|TEi|+ |flaws(Pi)∩FOpenPrec|
|TE j|+ |flaws(Pj)∩FOpenPrec| < 1 (4.12)

and

Pi < Pj ∈ f planSel
CL+OC (P1, . . . ,Pn) if

|CLi|+ |flaws(Pi)∩FOpenPrec|
|CL j|+ |flaws(Pj)∩FOpenPrec| < 1 (4.13)

In both equations, the number of flaws of the open precondition type OpenPrec enters the equation as the
estimation term for future costs.

Since the authors only had to deal with partial-order planning (refinements), the above heuristics do restrict
all cost calculations to the question to which extent the causal chains have been developed. The natural
estimate is consequently given by the number of causal links that have to be added4 – either by using existing
plan steps or by introducing new task schema instances. This view makes the number of task expressions,
respectively the number of causal links an adequate cost measure. Which one to deploy depends on two
factors: including the number of plan steps makes S+OC an inconsistent heuristic and A∗ consequently
cannot guarantee to find the optimal solution in terms of plan steps. The causal link cost measure in CL+OC

4Please remember that UCPOP action schemata use quantified literals as preconditions, with the quantification interpreted over the
universal base of the model [214]. Hence, there is a “number” of open or closed precondition literals associated with each plan
step.
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uses an admissible estimate but it targets the heuristic at the minimal number of causal link insertions and
does therefore not state anything about the number of plan steps (re-use of links produces the same cost as
introducing a task instance). Nevertheless, the above plan selection heuristics appear to be among the most
successful planning strategies for partial-order planning during the early 90’s.

In an hybrid configuration, however, cost and estimate measures are not balanced because they do not take
into account the wide-ranging changes of task expansion modifications to the plan structure. We have
adjusted this deficiency in two steps: Firstly, we extended the flaw census to the AbstrTask class. The
following two plan selection functions consequently take into account that abstract tasks produce some
efforts in terms of dealing with future tasks and in terms of maintaining the causal structure of the expansion
networks.

Pi < Pj ∈ f planSel
S+OCA (P1, . . . ,Pn) if

|TEi|+ |flaws(Pi)∩
(
FOpenPrec∪FAbstrTask

) |
|TE j|+ |flaws(Pj)∩

(
FOpenPrec∪FAbstrTask

) | < 1 (4.14)

Pi < Pj ∈ f planSel
CL+OCA(P1, . . . ,Pn) if

|CLi|+ |flaws(Pi)∩
(
FOpenPrec∪FAbstrTask

) |
|CL j|+ |flaws(Pj)∩

(
FOpenPrec∪FAbstrTask

) | < 1 (4.15)

It is an unpleasant property of the above selections that the cost-factor of a task expression does not take
into consideration that the expansion of an abstract task expression typically introduces a group of plan steps
within a single refinement. Our consequently defined A∗-Variant PSA+OCA employs a heuristic function
psa : P → IN for retrieving the number of plan modifications in a plan’s history that have added a task ex-
pression (by inspecting the respective E⊕ set). With this definition, a plan that obtained its plan steps via ex-
pansion becomes cheaper than a plan that had to insert its task expressions step by step. It is also easy to see
that this view better correlates with the cost-estimate factor of abstract plan steps, since it models the incur-
ring costs adequately. The resulting plan selection function is defined as follows:

Pi < Pj ∈ f planSel
PSA+OCA(P1, . . . ,Pn) if

psa(Pi)+ |flaws(Pi)∩
(
FOpenPrec∪FAbstrTask

) |
psa(Pj)+ |flaws(Pj)∩

(
FOpenPrec∪FAbstrTask

) | < 1 (4.16)

4.1.3 Generalized Flaw- and Modification-Based Strategies

A first generalization from specific flaw and modification classes (and from concrete data structures for
representing plans) is to base the decision of plan selection functions on the sizes of the sets of detected
flaws and proposed modifications. We will see that these functions incorporate a very strong notion of
flexibility.

The simplest form of flexibly generalizing from the provided flaw and modification classes can be re-
alized for the plan selection functions. Absolute measures for such strategic advice are defined as fol-
lows:

Pi < Pj ∈ f planSel
Fewer−F(P1, . . . ,Pn) if |flaws(Pi)|< |flaws(Pj)| (4.17)

And the analogous function for the published modification proposals:

Pi < Pj ∈ f planSel
Fewer−M(P1, . . . ,Pn) if |mods(Pi)|< |mods(Pj)| (4.18)

If the above strategy definitions appear to be trivial, please bear in mind that the utilized information is
only accessible so easily due to our system design in which flaws and modifications are presented explic-
itly.

It is a major drawback of these selection functions that in general a larger number of tasks is more likely to be
flawed than a small one and the same holds for the modifications. As a result, these absolute measures tend
to favour plans that are at an early stage of their development. This preference in turn leads to an exhaustive
schema that works in phases in a breadth-first manner. In order to take account of the different development
stages in the fringe, the above measure can be normalized by relating the set sizes to the number of plan
steps. This relative preference can be directed at the plan deficiencies:

Pi < Pj ∈ f planSel
F/TE (P1, . . . ,Pn) if

|flaws(Pi)|
|TEi| <

|flaws(Pj)|
|TE j| (4.19)
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as well as at the plan modifications that have been issued:

Pi < Pj ∈ f planSel
M/TE (P1, . . . ,Pn) if

|mods(Pi)|
|TEi| <

|mods(Pj)|
|TE j| (4.20)

Experimental evidence has shown that in particular the f planSel
F/TE heuristic works very effectively (see Chap. 6),

even as a primary strategy. Although it is also not an admissible heuristic – like the previous flaw- and
modification-oriented plan selections –, the total number of flaw instances seems to be a fairly precise
estimate in most practical scenarios for the amount of modification work that lies ahead in the refinement
space. An important influence for its success is its support of paths on which the deficiencies are steadily
eliminated. If a plan is chosen by f planSel

F/TE and at least one of its refinements eliminates one flaw without
producing a new one, then this successor plan will be selected in the following planning phase. This form
of stability evidently pays off.

The modification ratio is focusing on the local implications that a decision has in terms of commitment. It
does not directly constitute an estimate regarding the distance to a solution but rather quantifies the amount
of distraction on a (potential) solution path. Since typically most of the plan modifications for un-addressed
flaws persist into the refinement and are re-issued, the branching factors of a plan’s refinements can be
estimated by its own plan modification set. To put it more pointed: the question whether to use the de-
tection ratio or the modification ratio corresponds to the question whether to search for the plan with the
minimal distance to the solution or to search for the plan that offers the least alternatives for its refine-
ments.

It has to be stressed again that both metrics can be expected to offer valuable strategic advice and that
they do so without any significant computational overhead. Regarding an inverse definition of the above
plan selections, it makes no sense to consider the flaw-oriented functions (4.17) and (4.19) but in cases
where they are used as a last component that has to provide alternatives where preceding components are
undecided. If they are deployed too early in the strategy composition chain, all plans that are close to a
solution are generally delayed.

Another consideration that is frequently met in the planning-strategy literature is to reason about the defi-
ciencies “position” with respect to the intended plan execution time-line. There is a number of planning
systems that include the ordering of the plan steps in their strategic reasoning: The examples range from
flaw selection heuristics in HTN planning [184,270] and resource-planning [163] to planning algorithms that
inherently incorporate the “address early flaws” strategy [93, 200] (plus all heuristic state-space planners).
The underlying assumption is that the emerging execution order imposes in an organic manner the adequate
constraints on the subsequent plan segments.

mi < m j ∈ f modSel
≺ (P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ modsFor(fa,P),m j ∈ modsFor(fb,P)

and ∀tea ∈ (fa∩TE),∀teb ∈ (fb∩TE) :
(fa∩TE 6= /0∧fb∩TE 6= /0)⇒ tea ≺ teb ∈≺

(4.21)

The fundamental aspect of the prefer early flaws heuristic is of course less esoteric and more of technical
nature: developing a plan from the beginning has the advantage of a complete state information in the
initial state. In fact, this is the main explanation for the speed and expressivity of forward-search state-based
planning and ordered HTN planning [202]. This principle can be transfered to our refinement-based planning
framework, its impact is however not clearly evident yet. For the time being, we are inclined to believe that
its benefit in our context is not even domain but problem dependent.

The principle of least commitment has always been a major issue in Artificial Intelligence planning. The
basic idea is to make a decision in view of the implications that it may have on all decisions yet to come
and in particular in view of the consequences a wrong decision has on the process of finding a solution. Its
motivation lies in the observation that the number and length of backtracking paths increase if nodes with
a high branching-factor appear closer to the root-node and the density of solutions in the search space is
low, that means, there is a large number of futile alternatives “below” a faulty decision point. This problem
is addressed by the least-commitment principle such that it organizes the search space in a way that every
decision does put as few restrictions on future decisions as possible.
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Partial-order planning is a prime example for the idea of least commitment, because the ordering of plan
steps is deferred until a specific ordering becomes strictly needed and the task parameters are finally assigned
at the latest decision-point possible. In terms of the refinement planning framework, least commitment
means to select refinements that impose only as few constraints on further refinements as necessary. A
measure for quantifying the level of commitment is therefore the size of the refinement space that is covered
by the selection versus the space that is ruled out by the decision. In the view of our framework, the plan
modifications for different flaws represent a disjunctive search space. This implies that basically most of the
plan modifications are only mutual exclusive with respect to their fellow modifications that address the same
flaw instance. As a consequence, selecting one modification rules out the application of its alternative flaw-
solvers but is likely to be independent from those of other flaws. In other words: the level of commitment
for a single plan modification can be estimated in terms of the number of solving alternatives that exist
for the corresponding flaw. The more alternatives exist, the higher is the commitment for choosing among
them.

Along these considerations, we developed a modification selection function called least committing first
f modSel
LCF , which prefers modifications according to the number of fellow-modifications that have been pub-

lished to address their shared corresponding flaws. It is defined by the following equation:

mi < m j ∈ f modSel
LCF (P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ modsFor(fa,P),m j ∈ modsFor(fb,P)
and |modsFor(fa,P)|< |modsFor(fb,P)|

(4.22)

It can easily be seen that this is a flexible strategy, since it does not depend on the actual types of issued flaws
and modifications: it just compares answer set sizes in order to keep the branching-factor in the search space
low. Experimental evidence has shown that the LCF modification selection function is not only among the
best performing primary strategies but also that it maintains its performance across the domains. This form
of stability confirms previous results in the field concerning least commitment strategies. As an interesting
historic note, many classical strategies have been formulated in terms of such more general flaw repair
costs. Their algorithmic procedure however jams these principles into a fixed preference schema like the
ones presented below and in the related work sections, and uses them only as a tie-break rule for equal
preferences.

Least committing first can also be seen as a generalized adaptation of the successful Least Cost Flaw Repair
partial-order planning strategy, a method that repairs first the (causal threat and open precondition) flaws
associated with the minimal number of modifications [143, 218]. In this sense, it roughly corresponds to
an LCFR with uniform modification costs. Other approaches formulate it more conservatively in terms of
delaying over-committing modifications, for example, postponing the treatment of causal threats for which
multiple resolutions exist [215]. Thanks to our framework’s formal basis and uniform representation, we can
easily extend the field of application for this heuristic to all configurations of hybrid planning and scheduling
as well. It is thereby combined it with the principles from the UMCP fewest alternatives first task expansion
strategy, which selects expansion networks according to the number of alternatives that are applicable [271].
We think that f modSel

LCF is also a generalization5 of the resolver selection heuristic that is used in the IXTET
temporal resource-planning system. Using a depth-first plan selection, this algorithm computes the com-
mitment costs for applying a resolver (which corresponds to a subset of our plan modifications) in terms of
actual interval restrictions and a lower bound for expected costs [116]. Since the least commitment principle
appears to be successful in all key-areas of hybrid planning and scheduling, and because our least committing
first strategy is able to cover its functionality to a major extent, we are very confident that we have imple-
mented a powerful “general-purpose” strategy for all presented configurations.

A directly corresponding plan selection to LCF can be characterized by preferring plans in the fringe ac-
cording to the number of fellow-plans that are refinements of the same (processed) plans. The strategy
f planSel
Siblings appears however not to be an adequate adaptation of the least commitment principle. Since it per-

forms an exhaustive search among members of small families, its contributions to a strategy repertoire are
considered marginal. It may therefore only play a part as a final judgement in larger strategy function
arrangements.

5It has to be noted that in resource-planning configurations, more specific modification selection functions can be employed. They
can actually perform the described interval arithmetics for quantifying the commitment level in the required detail.
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4.1.4 The HotSpot Technology

The presented implementation of the least-commitment principle is in practice a very efficient strategy. It
has however two obvious drawbacks: First, it would be much better informed if it took the actual structure
of the compared options into account. It is, for example, not very intuitive to presume that choosing one of
two large task expansions represents less commitment than choosing one of three variable co-designations.
The expansion obviously makes considerably more changes to the plan structure, and we expect that the
“amount of change” has side effects on the overall flaw and modification availability in the future. In par-
ticular, it is not always the case that the modifications do not influence each other if they have been issued
for different flaws, because the flawed elements are the same or depend on each other indirectly, etc. For
example, think of an expansion, which typically affects the (number of consistent) variable co-designation
modifications that are publishable for the refinement plan. The second drawback concerns the restriction of
the least committing first strategy to modification selection: if the mutual influence of flaws and modifica-
tions was quantified, then there would be a measure for comparing plans according to their overall flaw and
modification interaction “level”, and hence a plan selection was available.

Our proposal is to lift the least-commitment principle from a blind comparison to a more informed decision-
making on the plan structure that is still flexible. The principal hypothesis is that a plan typically has “weak
points” at which numerous deficiencies can be identified and that refinements for fixing these problems
typically interfere with each other by imposing constraints on subsequent refinements. We therefore advise
the system to solve isolated sub-problems first and expect that the resolving operations’ effects will have
only local consequences on the plan structure – this is a strong notion of least commitment. The following
sections define corresponding modification and also plan selection functions that operate with this novel
concept of multi-flawed plan components, so-called HotSpot components. We present the different modes
of HotSpot handling that we have identified so far.

We begin with a simple flaw-based modification selection that tries to avoid direct uniform HotSpots. That
means, the function relates the announced flaws with the number of their shared references to plan compo-
nents and prefers the available plan modifications according to the number value of their associated flaws.
An early commitment (cf. [144]), that means, selecting modifications that affect more frequently referenced
plan components, is thereby avoided.

mi < m j ∈ f modSel
DirUniHS(P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ modsFor(fa,P), m j ∈ modsFor(fb,P)

and ∑
f∈({f1,...,fm}\fa)

|f∩fa|< ∑
f∈({f1,...,fm}\fb)

|f∩fb|
(4.23)

Consider the following example: Let f1 = {tea,φa} and f2 = {teb,φb} be two flaws of class FOpenPrec,
and let f3 = {tea} ∈ FAbstrTask. According to the direct uniform HotSpot definition, flaws f1 and f3 both
refer to a plan step tea, that means, they are both assigned a HotSpot value of 1. f2 is the only flaw that
marks its plan components and is therefore assigned 0. As a consequence, the selection function prefers all
modifications that address f2 over the modifications for f1 and f3 likewise.

Direct HotSpot calculations offer a first insight into the inter-flaw relationships but do not capture relatively
trivial dependencies between the flawed plan components. We therefore employ the notion of plan sub-
components (see Sec. 2.6.2) in order to define HotSpot heuristics of finer granularity. The function comp,
which returns all sub-components of a set of plan components, has been introduced in Sec. 3.2.1. Given that,
the following strategic function defines the indirect uniform HotSpot modification selection:

mi < m j ∈ f modSel
IndUniHS(P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ modsFor(fa,P), m j ∈ modsFor(fb,P)

and ∑
f∈({f1,...,fm}\fa)

|comp(f)∩ comp(fa)|< ∑
f∈({f1,...,fm}\fb)

|comp(f)∩ comp(fb)|
(4.24)

The justifiable question arises why to maintain both measure types, the direct and the indirect HotSpot. We
do so, because there are different target application areas for both of them: The lower granularity of a direct
HotSpot heuristic is more suitable in a strategy composition where subsequent strategies are deployed. In
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this case, we are not interested in the fine-granular computations of the indirect HotSpot that produces much
smaller equivalence classes, which can hardly be post-processed in a useful way. On the other hand, if we
are looking for a component that performs a final decision, the direct variant is possibly not able to partition
the remaining equivalent choices adequately.

For the definition of plan selection functions, we can derive the respective HotSpot metrics directly from
the presented modification selections. The flaw-oriented direct and indirect uniform HotSpot plan selection
functions f planSel

DirUniHS and f planSel
IndUniHS accumulate the direct, respectively indirect HotSpot values for each flaw

in a plan and relate these values to the total number of detected flaws per plan.

Pi < Pj ∈ f planSel
DirUniHS(P1, . . . ,Pn)

if
∑f∈flaws(Pi) ∑f′∈(flaws(Pi)\f) |f∩f′|

|flaws(Pi)| <
∑f∈flaws(Pj) ∑f′∈(flaws(Pj)\f) |f∩f′|

|flaws(Pj)|
(4.25)

The indirect HotSpot calculation is defined as follows:

Pi < Pj ∈ f planSel
IndUniHS(P1, . . . ,Pn)

if
∑f∈flaws(Pi) ∑f′∈(flaws(Pi)\f) |comp(f)∩ comp(f′)|

|flaws(Pi)|

<
∑f∈flaws(Pj) ∑f′∈(flaws(Pj)\f) |comp(f)∩ comp(f′)|

|flaws(Pj)|

(4.26)

By computing the average number of overlappings between the announced flaws, the HotSpot plan selections
provide a first estimation of the degree of interdependencies between defects in plans and the consequent
mutual influences of the associated plan modifications.

Instead of only concentrating on the actual number of commonly affected plan components, we also devel-
oped an adaptive HotSpot calculation that tries to predict the conflict potential between two flaw classes.
During the exploration of the refinement space, the strategy might find that for the given planning prob-
lem and domain, open preconditions often overlap with abstract plan steps. This may be an artefact of the
strategy itself, an inherent property of the domain, or a characteristic of the problem instance, but the sys-
tem can nevertheless induce from experience that these two flaw classes appear to be somehow connected.
Consequently, for the current plan generation episode, the HotSpot computation can be modulated by these
experience values.

Regarding the calculation of direct HotSpots for selecting modifications, the following strategy does not
treat the flaws uniformly but associates all cross-references by flaws with an adaptive weight function w.
The weights are the estimates for the “interactiveness” of flaw classes on a HotSpot. Apart from that, it is
constructed like the uniform version.

mi < m j ∈ f modSel
DirAdaptHS(P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ modsFor(fa,P), m j ∈ modsFor(fb,P)

and ∑
f∈({f1,...,fm}\fa)

|fa∩f| ·w(fa,f) < ∑
f∈({f1,...,fm}\fb)

|fb∩f| ·w(fb,f)
(4.27)

The adaptive weight function is updated between two applications of the HotSpot modification selection. It
is defined as the function w : F×F→ IR by the following equation

w(f1,f2) =
spotd(f1,f2)

maxfx,fy∈F(spotd(fx,fy))
·w′(f1,f2)

The function spotd, which will be defined below, keeps record of the accumulated amount of (direct uniform)
HotSpot values between members of the involved flaw classes. The division by the maximum value in the
HotSpot record over all flaw classes normalizes the weight across the earlier selection-function application
episodes. A second weight-factor is the function w′, a pre-defined modulation table in which directed conflict
weights can be set. This mechanism allows us to define, for example, that a HotSpot relationship between
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an open precondition flaw and an abstract task flaw is more dominant on the open precondition’s side.
Since our experience indicates that resolving an open precondition issue often interferes with necessary
constraints in the task expansion networks, the user-defined HotSpot weight puts slightly more penalty on
the open precondition flaw’s HotSpot value in this case. Appendix A contains an example modulation table
that we used in our experiments. If however these two flaw classes rarely coincide, the modulation function
w′ becomes less and less influential as the normalization term dominates.

We now define the function that records the sum of HotSpot values between two instances of a flaw class
over the current plan generation episode. Let Phistory be the set of all plans that have been visited by the
refinement planning algorithm so far and let F1 and F2 be the respective flaw classes for flaw instances f1
and f2:

spotd(f1,f2) = ∑
P∈Phistory

(
∑

f∈(flaws(P)∩F1)

(
∑

f′∈((flaws(P)∩F2)\{f})
|f∩f′|

))

Note that the argument flaws are not necessarily of different classes.

The adaptive HotSpot modification selection can also be defined over indirect flaw relationships. We omit
an explicit presentation of the f modSel

IndAdaptHS strategy component and ask the reader to refer to the previous
selection function definition. The novel part lies of course in the adaptive weight function that uses an
appropriate indirect HotSpot value accumulating function:

spoti(f1,f2) =

∑
P∈Phistory

(
∑

f∈(flaws(P)∩F1)

(
∑

f′∈((flaws(P)∩F2)\{f})
|comp(f)∩ comp(f′)|

))
(4.28)

The HotSpot strategies defined so far exclusively focus on the flaws’ commonalities. As already suggested
in the introductory paragraph to this section, overlappings in plan modifications can also be analyzed for
commitment estimates. A direct modification HotSpot calculation as a counterpart to the flaw-oriented
selection (4.23) is of course possible, however not very reasonable, since elementary additions never share
components directly (all of them are new) and deletion overlappings hardly ever occur (in all presented
configurations, they only arise in alternative expansions). We therefore define the modification selection
function f modSel

ModBasedHS analogously to the indirect uniform HotSpot strategy (4.24) using the following “trick”:
instead of tracking the usual sub-component references, this function consults the domain model when
determining the respective entities’ sub-components. By doing so, two task inserting modifications overlap
if they share the same task schema, and the like.

mi < m j ∈ f modSel
ModBasedHS(P,{f1, . . . ,fm},{m1, . . . ,mn})

if ∑
ei∈E⊕i ∪E	i

(
∑

m′∈(mods(P)\{mi})

(
∑

e′∈E⊕′∪E	′
spotm(comp∗(ei),comp∗(e′),0)

))

< ∑
e j∈E⊕j ∪E	j

 ∑
m′∈(mods(P)\{m j})

(
∑

e′∈E⊕′∪E	′
spotm(comp∗(e j),comp∗(e′),0)

)
(4.29)

The selection function performs a pair-wise comparison between the elementary modifications in the issued
plan modifications. It does so by employing comp∗, a function that returns not only the referenced com-
ponents, but also the respective domain model references for elementary additions. With this information,
the spotm function computes the overlap between plan components. Since there are many connections into
and within the domain model components, it is very probable that any overlapping will cover the complete
domain model. For example, following a task insertion to its task schema is only one step away from the
task schema usage in an expansion network, which in turn is only one step away from the respective ab-
stract task schema. Therefore, the heuristic influence of transitive references inside the domain model must
decay and the overlap computation can be defined as the following function: Let E1 and E2 be two sets
of plan components and domain model elements and let n,θ ∈ IN be natural numbers that represent the
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a
b

c

Figure 4.2: Flawed plan components establish HotZone areas.

“distance” of an indirect component relationship, respectively the slope of the decay of this relationship’s
influence.

spotm(E1,E2,n) = |E1∩E2| · exp(− n
θ

)+ ∑
e1∈E1

∑
e2∈E2

spotm(comp∗(e1),comp∗,n+1)

Please note that the computation terminates because all domain models are finite.

Like we have shown for the flaw-oriented modification and plan selection functions, the above modification-
based HotSpot computations can be conveyed into plan selections as well: We developed a strategy that
prefers those plans that exhibit a lower average value of discovered modification HotSpots. By that, it
corresponds to the direct uniform HotSpot plan-selection. The f planSel

FewerModBHS strategy function accumulates
the computed modification overlappings as provided by the above f modSel

ModBasedHS for a single modification. It
finally relates the HotSpot values to the total number of plan modifications issued for that particular plan in
order to normalize the values.

4.1.5 From HotSpots to HotZones

The notion of HotSpots is to focus on outstanding components of the partial plan data-structure. To some
extent, this imitates the approach of a human user who usually concentrates on specific parts of a plan when
reasoning about development options. In order to improve the discovery of commitment and the quality
of the respective measure we extend the HotSpot concept by taking into account how the affected plan
(sub-) components are connected with each other in the plan: thereby connected flaws constitute so-called
HotZones in the plan. Fig. 4.2 illustrates this conceptualization: The plan components that are directly
referenced by flaw c are depicted in the center of the orange disc. Their HotSpot value is propagated into the
components that are connected to them with a certain decay, and so the plan components that are directly
flawed by b receive some additional score. The sphere of a is isolated, that means, resolving flaw a is more
likely to imply only local commitments than b or c. This way of strategic reasoning is completely original
and can only be accomplished in our refinement planning framework with its explicit option representation.
The employed algorithmic procedure, again, appears surprisingly simple: It builds an initial map of all
HotSpots in the partial plan and then re-evaluates each individual HotSpot according to the HotSpots on its
neighbourhood components.

mi < m j ∈ f modSel
HZone (P,{f1, . . . ,fm},{m1, . . . ,mn})

if mi ∈ mods(fa,P),m j ∈ mods(fb,P)
and spotzone(fa,{f1, . . . ,fm}\fa,0) < spotzone(fb,{f1, . . . ,fm}\fb,0)

(4.30)

The evaluation of the flaws is defined recursively with respect to the value of flaws that refer to the same
sub-components. The pre-defined constant parameter θ ∈ IN thereby modulates the slope of the decay with
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respect to the neighbours’ influence over an increasing distance of n ∈ IN.

spotzone(f,{f1, . . . ,fm},n) =


0 for m = 0

∑
f′∈{f1,...,fm}

|comp(f)∩ comp(f′)| · exp(− n
θ

)

+ spotzone(f′,{f1, . . . ,fm}\{f′},n+1)
else

The HotZone concept is also applicable to the task of plan selection, namely in two ways: the simpler form
is identifying the plan with the smallest maximal HotZone value, the least hottest zone so to speak. The
f planSel
LeastHZone strategy function performs for each flaw in each plan the calculations of f modSel

HZone , stores the maxi-
mum HotZone value for each plan, and eventually prefers the less rated plans as described.

Pi < Pj ∈ f planSel
LeastHZone(P1, . . . ,Pn)

if max
f∈flaws(Pi)

(spotzone(f,flaws(Pi)\{f},0)

< max
f∈flaws(Pj)

(spotzone(f,flaws(Pj)\{f},0)

(4.31)

The other HotZone plan-selection implementation is f planSel
FewerHZones, a function that prefers plans with fewer

HotZone “clusters”. Such clusters are identified by an algorithm that operates similar to the basic HotZone
computation: When tracking the transitive overlappings of components, the set of flaws can be partitioned
accordingly into dependent sub-sets. The number of identified sub-sets is the number of (independent)
HotZones. Such a partitioning is achieved by the following clustering function clusters : 2F→ 22F

. It takes
a set of flaws as an argument and returns a set of sets of flaws with each set representing the inter-connected
members of one HotZone.

clusters({f1, . . . ,fm}) =
/0 if m = 0
{{f1}} if m = 1
clusters({f1, . . . ,fm−1})∪{{fm}} if ∑S∈clusters({f1,...,fm−1}) spotzone(fm,S,0)⋃

S∈clusters({f1,...,fm−1}){add(fm,S)} else

The auxiliary function add adds a flaw f to a “HotZone”, that means, a set of flaws S, if f overlaps with
some flaw in S:

add(f,S) =

{
S if spotzone(f,S,0) = 0
S∪{f} else

Finally, the plan selection function f planSel
FewerHZones can be defined as

Pi < Pj ∈ f planSel
FewerHZones(P1, . . . ,Pn) if |clusters(flaws(Pi))|< |clusters(flaws(Pi))| (4.32)

The HotZone strategies perform in general very well in all of our experimental set-ups, of course in particular
for problems and domains where isolated threads of actions are the rule. Regarding strategy compositions,
it has to be taken into account that they develop their potential only on literally “large” flawed plans. As
a consequence, the size of the problem instance determines the moment at which the plans’ data structures
provide enough components to feed the HotZone algorithm properly and the fringe candidates become
discriminable. For problems with small solutions (few tasks and constraints), this horizon is typically never
reached. It has also to be mentioned that all presented HotZone strategies are able to guide search on the last
refinement steps towards a solution. While it is trivially given that a solution has no HotZone at all, it has
also to be considered that with the “last” flaws getting eliminated, the HotZone metric drastically changes
in favour of the close-to-solution candidates.
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4.1.6 Miscellaneous Strategies

This section is dedicated to two selection functions that do not perform a strategic reasoning in the narrow
sense but take one of the previously defined strategies and post-processes its results.

As it has been mentioned above, it is not trivially decidable for some strategies whether to use them in the
way they have been defined or to prefer their opposite choices. For instance, it makes sense to explicitly
prefer one modification class as well as explicitly evading another class. To this end, we define the inver-
sion strategy, which is defined as a modification selection by the following equation: Let f modSel

inner be the
modification selection function that is to be inverted, then

mi < m j ∈ f modSel
f modSel
inner

−1(P,{f1, . . . ,fm},{m1, . . . ,mn})

if m j < mi ∈ f modSel
inner (P,{f1, . . . ,fm},{m1, . . . ,mn})

(4.33)

Note that if the inner modification selection function is undecided, so is the inverted selection. The inversion
for plan selections is defined analogously.

Pi < Pj ∈ f planSel

f planSel
inner

−1(P1, . . . ,Pn)

if Pj < Pi ∈ f planSel
inner (P1, . . . ,Pn)

(4.34)

A second “meta strategy” concerns all selection functions that are based on a (quantitative) metric. In our
experimental studies it turned out that most of these functions, for example, the S+OC plan selection, can
hardly be combined with other strategies because they typically produce a complete linear ordering on the
presented options. On the other hand, the actual numerical differences are often very small, sometimes they
are only arithmetic artefacts that are caused by the actual algorithm’s implementation. We therefore propose
a simple clustering strategy that takes the metric function of a respective modification or plan selection and
sets up equivalence classes according to the sample mean distances that are produced by the metric. Let
f planSel
inner be a plan selection strategy that is based on a metric g, and let linearize be the known linearization

function for partially ordered items, then the clustering strategy for this selection is defined by the following
equation:

Pi < Pj ∈ f planSel
∆ f planSel

inner
(P1, . . . ,Pn)

if Pi < Pj ∈ f planSel
inner (P1, . . . ,Pn)

and |g(Pi)−g(Pj)|<
∑P′x,P′x+1∈linearize f planSel(P1,...,Pn) |g(P)−g(P′)|

n−1

(4.35)

The clustering strategy thereby prefers all options to the same degree if their evaluation differs below average
according to the embedded metric. A definition for a modification selection with the clustering method can
be given analogously.
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4.2 Discussion

4.2.1 General Comments

With such a great emphasis on the flexibility of the framework and its planning strategies, the question
naturally arises what the the price is for providing high-quality search control in such a “verbose” architec-
ture in which everything is explicitly represented. The answer is that dealing with every option explicitly
is of course a costly procedure per se, but put into perspective of the gained predictive power and sim-
plicity of deployment, the actual costs are satisfactory. The strategic “overhead” can be divided into two
sections:

1. Computing the decision of a compound strategy, that means, aggregating the partially ordered options
can be done with a computational effort that is cubic with respect to the input options. The factors
in the polynomial bound are very small, because any subsequent strategy’s result is only probed for
elements in the same equivalence class. In practical applications with longer chains of selection
functions, the last components are often not activated at all on large portions of the search space,
because the primary strategy are decisive enough.

2. The computational complexity of most components is completely negligible (set size comparisons,
and the like). The effort for the more complex computations in the HotSpot and HotZone heuristics is
mitigated by caching the invariant results.

Related to the previous computation considerations is the question of being able to cut certain branches
in the search tree. As it has been stated periodically, our philosophy is to conduct a complete search as
long as it makes sense to the application area. There are, however, two cases in which plan modifications
can be safely discarded: We will refer to these two cases as unit modifications and unreachable modifica-
tions.

Unit modifications are inspired by unit clauses in the resolution calculus: if there is exactly one plan modifi-
cation issued for a flaw, this modification is executed immediately and all other options are discarded. This
zero commitment rule is not compromising the solution space if the strategy is complete (which is the case
for all our components). A minor misconception is to argue that this unit modification might produce the
paradox of a premature commitment. For example, consider a plan with an open precondition, for which a
new plan step is inserted “automatically” if there are no suitable condition providers available. The argument
is that if the system “waited” a provider could appear elsewhere and then be re-used accordingly. The ar-
gument is however invalid because our approach can rely on the current configuration to produce always all
available refinements and if there exists an alternative plan that corresponds to the described re-use scenario,
the system will eventually discover that plan on a different refinement path.

The notion of an unreachable modification is derived from the idea that the modification selection functions
are choosing those plan modifications that are considered appropriate in the given order for addressing
the flaws in the current plan. Let m1, . . . ,mn be a sequence of plan modifications obtained from a respective
strategy call for a plan P and flaws f1, . . . ,fm. Let ji be the minimal modification index 1≤ ji ≤ n associated
with a flaw f j such that modsFor(f j)∩{m ji+1, . . . ,mn}= /0. The minimum j of these indices is the index of
the modification that is the very first in the sequence for which the addressed flaw is completely treated. If
we respected the modification selection’s choice we would traverse the refinement space according to this
sequence. When we finally backtracked over the refinement obtained from modification j, we would in
particular have exploited all flaw resolution options that were available for the respective flaw in P. As a
consequence, the respective flaw persists over the subsequent refinements and hence there will be no solution
beneath plan P. For this reason, every modification after the index j is regarded as unreachable and therefore
no associated refinement is produced.

Another topic that arouse frequently in discussions on conferences and reviewers’ feedback was the role of
least commitment in refinement-based planning. The “bone of contention” lay in the preference of HotSpot,
respectively HotZone selection functions: The avoidance of multi-flawed plan elements appeared counter-
intuitive, since one would expect that concentrating on “common issues” would be comparably effective like
it has turned out to be the case in constraint satisfaction. The DPLL search algorithm, for instance, gains its
performance through dealing with the most constrained variables first. We believe to settle this issue with
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two arguments. First, early empirical evidence showed that HotSpot affinity performs significantly worse
than the presented preference and hence suggested that there is no point in applying an inversion strategy to
it. This result can be explained by dependencies between the modification steps on different levels of plan
development. As we noted before, the competing modification proposals introduce a significant branching
as well as a high probability of backtracking. To put it short: choosing a resolution for a HotSpot/HotZone
member commits indirectly on specific resolutions for fellow members.
Our second argument concerns the misconception, as we understand it, of the relationship between the
least commitment principle in planning and the classical DPLL heuristic in constraint satisfaction solving.
There is in fact no conceptional difference between “selecting the most constrained variable” and the f modSel

LCF
heuristic “selecting the modification with the least alternatives” since there is a subtle difference between a
focusing on constrained results and constraining refinements. In view of the original DPLL, and this caused
some confusion, both notions coincide. A closer look on the HotSpots’ “selecting the least connected
modification” principle reveals that it corresponds to some extend the efforts in the CSP community to
identify independent partitions of a constraint net.

A last general remark has to be made about the component repertoire comprising flaw- and modification-
based variants of most selection functions at the same time. The predictive power of plan modifications (in
HotSpots, etc.) is in general more precise than that of flaws, because we can literally look into the forthcom-
ing changes and assess their conflict potential directly. However, this projection is basically not only limited
to the next level of refinement but also producing to many false-positive interactions. Both properties are
attributable to the circumstance that plan modifications typically carry two classes of elementary modifica-
tions: the first ones are essential for the plan modification and the others are semantic “glue” that adapts the
modification to the plan context. An example is the expansion modification, which contains not only all ele-
ments of the expansion network but also additional constraints for preserving causal commitments, and the
like. It is these adaptation elements that produce disagreeable overlapping artefacts. The flaw perspective is
however mostly context-invariant, for example an open precondition, if un-solved, remains syntactically the
same. Problems persist, but solutions change.

4.2.2 Modelling Classical Strategies

Dealing with the specifics of search control has always been and still is a central topic in the area of Artificial
Intelligence planning and scheduling. However, may it be because of a focus on other representations and
methods or may it be because of its huge amount of freedom, to our knowledge only very few research
has been devoted to search strategies for hybrid planning and scheduling. In addition, even the existing
strategies have never been systematically compared and assessed in this context. We believe that this is
because of two reasons: Firstly, as we just mentioned, the space of potential strategy implementations that
covers the presented system configurations is several orders of magnitude larger than for one paradigm
alone. The proposed strategy components of the preceding section alone can be composed into billions of
plan and modification selection triples, and this makes a complete investigation only on a handful of domains
virtually impossible. The second reason is that the search strategy of practically all existing planning systems
is defined only implicitly, an integral part of the actual plan generation algorithm and strongly dependent
from the supported plan representation. As a consequence, changing one of them inevitably affects the other
and handicaps any systematic strategy evaluation conceptually as well as from a software technological point
of view. It is in particular the second reason that leads to the unsatisfactory perspective that an empirical
analysis will ever be attempted.

But what can be learned from the existing work on universal, that means, not system-specific planning
strategies and how can it be applied to hybrid planning and scheduling?

The principle of identifying deficiencies and computing resolution steps is a key characteristic in partial-
order planning algorithms. Their procedures for navigating through the plan-space decide first on the flaw
to solve and then on the appropriate resolution method. In order to do so properly, plan-space planners like
UCPOP [214] and SNLP [177] have to address flaws according to a systematic schema. One way to define it
is for example the following:

“The PoP procedure has a distinct control for sub-goals and for threats. At each recursion, it
first refines with respect to a sub-goal, then it proceeds by solving all threats due to the resolver
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of that sub-goal. Consequently, there are two non-deterministic steps: (i) the choice of a relevant
action for solving a sub-goal, and (ii) the choice of an ordering or a binding constraints for
solving a threat.”

[118, Section 5.4.2] and [279]

The same strategy types (with different names and labels) occur even in very general refinement-based
frameworks like [148], where the various refinements are tackled in a given ordered structure (and can
be seen as combined flaw finding and resolution methods). The referenced framework, for example, first
performs a goal establishment phase and in a second phase conflict resolution with a preference on adding
ordering constraints.

We call such strategies in-flexible and they are implemented in most of todays partial-order planning systems.
The area of least-commitment planning made an effort to provide a broader theory for setting up more
general preference schemata and for predicting their performance. Their research is concerned with studying
the performance of strategies as well as to some extent how these schemata can be reasonably combined.
While there has been an extensive amount of work in the field of partial-order planning, including [29,
143, 177, 215, 218, 236, 275, 297], only few studies have been published for HTN planning, for example
[86, 101, 268, 271],6 not to speak of hybrid planning [180, 298]. All these approaches explore in great detail
how specific flaw and modification combinations can be classified. They distinguish, for example, causal
threats that are resolvable by variable separation from those that are not. Also the priority within a flaw
class becomes important, for instance, the ordering of open precondition deficiencies. We believe that at
this stage such a close focus on configuration-specific flaw and modification sets contradicts the claim of
flexibility of our strategies and in particular hampers their applicability across system configurations. The
situation becomes even more obscure if the context-dependent ambiguity of plan modifications with respect
to the commitment consequences is taken into account. For example, Veloso and Blythe reported in [273] of
a direct correspondence of commitment to causal links in partial-order planning and ordering constraints in
total-order planning. We therefore leave our most specialized selection functions at the class-specific level.
A supposable extension of our strategies to more specific treatment of plan modifications is, for example,
adding more reasoning capabilities for ranking constraint-set manipulations [86].

Let us briefly examine how some key strategies from the literature can be expressed in our framework. Each
of them has been implemented in a leading hierarchical planning system.

The first candidate is the strategy of the HTN planning system UMCP. The originally published strategy only
considered the systematic expansion of abstract tasks, while all executability checks and variable bindings
were left to a closing constraint reasoning process [85]. We can therefore simply say that

f modSel
UMCP = f modSel

Pre f−MExpandTask
(4.36)

Regarding the plan selection, the authors proposed elsewhere [83] three procedures: depth-first, breadth-
first, and a best-first heuristic over the number of non-primitive tasks in the plan. While the first two are
trivially the previously introduced components (Def. (4.1) and 4.2), the suggested enhanced plan selection
function can be described as follows:

f planSel
UMCP = f planSel

Addr−FAbstrTask
−1 (4.37)

Later work on UMCPincorporated the previously mentioned fewest alternatives first strategy (FMF) for mod-
ulating the expansion of abstract tasks: select for expansion that task for which the minimal number of alter-
natives is available [271]. It has to be noted that the term “alternatives” is here interpreted over the transitive
closure of method applications, that means, all methods are applied off-line on all abstract tasks thereby
inducing an AND/OR tree that displays all constructable task expansions for reference. It is our understand-
ing that this, however, gives no deeper insight into the actual applicability of the expansion alternatives and
that therefore our abstraction (only probing the given modifications) is appropriate. Furthermore, the FMF

6It has to be noted that HTN strategies as such cannot be compared to those for non-hierarchical planning. This is due to the expressive
power and system-specific extensions of expansion methods: Most systems support some sort of tagging or programming facility
that influences the algorithms search strategy directly. This ranges from annotating conditions [258] to specifying the succession
of variable bindings [199].
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heuristic implies a strong interdependency between the refinement generator (computing the expansions) and
search control. Our interpretation of the advanced UMCP strategy is consequently

f modSel
UMCP+ = f modSel

Pre f−MExpandTask
. f modSel

LCF (4.38)

with an un-altered plan selection.

The remaining improvements finally addressed the question, in our terminology, how to deal with plan
modifications that bind variables. It is reasonable to presume that this translates into the preference of
OpenVarBind flaws and does not refer to other modifications that introduce variable constraints as a required
part of their refinement. The proposed commitment strategies are:

(1) a strategy that delays variable bindings as much as possible; (2) a strategy in which no
non-primitive task is expanded until all variable constraints are committed; and (3) a strategy
that chooses between expansion and variable instantiation based on the number of branches that
will be created in the search tree.

[268]

We think that the following realizations are fairly straight-forward translations into our strategy repertoire
and demonstrate the elegance of our component chaining:

f modSel
UMCP+(1) = f modSel

Addr−FOpenVarBind
−1 . f modSel

Pre f−MExpandTask
. f modSel

LCF

f modSel
UMCP+(2) = f modSel

Pre f−MAddVarConstr
. f modSel

Pre f−MExpandTask
. f modSel

LCF

f modSel
UMCP+(3) = f modSel

Pre f−MExpandTask∪AddVarConstr
. f modSel

LCF

(4.39)

The choice between preferring a flaw versus the associated modifications is a subtle one. In variant (1)
we intend not to postpone variable bindings that are, for example, introduced by threat resolution steps,
while the rationale of variants (2) and (3)’s modification preference is that all kind of reason for binding the
variable is accepted.

In the context of the UMCP system we have to mention a strategy that deals with an issue that most HTN
systems have to address: which condition or constraint establishers are necessarily outside the expansion
network and which will eventually occur inside of it. O-PLAN, for comparison, offers an explicit modelling
mechanism to indicate which conditions are expected to be provided from outside the task network [258].
UMCP was in contrast provided with the ExtCon strategy, the “external conditions task selection” strategy,
that performed even better than FAF [269]. External conditions are thereby not specified explicitly be the
user but instead are found automatically by the planning system when it pre-compiles its knowledge base.
The strategic algorithm can be sketched as follows: when selecting a task to decompose, priorities are given
to (1) tasks that can possibly establish the current top condition or (2) tasks which can possibly threaten
the current top condition. During method instantiation, the external conditions of the method are pushed
onto the top of the applicability condition stack. This top element is the current priority to the planner. We
note that this technique becomes obsolete in a framework that provides task on all levels of abstraction with
preconditions and effects.

Another well-established strategy for hierarchical and in particular hybrid planning systems is called expand-
then-make-sound and as such an implementation of the OCLh approach [180]. It is described as a strategy
executing two alternating modes: In the first phase exactly one abstract plan step is decomposed. In every
second phase, the causal structure of the plan, respectively OCLh’s equivalent to it, is completed and prob-
lems regarding causal interactions are fixed. The alternation is realized in our framework by simply prefer-
ring threat resolving and open condition closing modifications over task expansions. As a consequence, a
task decomposition is only chosen if the plan is “sound”.

f modSel
EMS = f modSel

Addr−FThreat
. f modSel

Addr−FOpenPrec
. f modSel

Pre f−MExpandTask
(4.40)

The rationale for using a modification-oriented strategy rather than a flaw-oriented one is that we try not to
evade those expansions that have been issued for threat resolution, etc. (see hybrid configuration descriptions
in Chapter 3). Concerning the plan selection, we believe that the EMS behaviour is adequately represented
by the modification selection alone and hence, any depth-first like plan selection is appropriate. We would
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also like to point out that this strategy also covers the strategy of the hybrid planning approach proposed
in [44]. As a minor deviation, we do not impose a strict stratification on the actions in our domain models
and hence do not exactly decompose in a stratum-like manner.

The last showcase is the well-known hierarchical planning system SHOP (see also Sec. 1.1.3). It has been
successfully deployed in numerous application domains and for that reason its strategy came naturally into
our focus. SHOP’s specific characteristic is to expand abstract tasks in the order in which they are to be
executed [200]. One implication of this procedure is that the current world state can easily be tracked and
updated, beginning from the initial situation until the task that is to be decomposed next. This gives much
expressive power to SHOP’s formalism, because a wide range of computations can be employed to evaluate
the state before the execution point of the “current abstract task”. As it has been discussed before, there
are however arguments for adopting such a principle also in partial-order planning scenarios because of the
constraining influence of the (complete) initial state description (cf. Sec. 1.1.1). The SHOP planning strategy
can be modelled by the following strategy sequence (again, all particular SHOP-like strategic reasoning is
performed already in the modification selection):

f modSel
SHOP = f modSel

≺ . f modSel
Pre f−MExpandTask

−1 (4.41)

The early flaw preference (Def. 4.21) is the key heuristic and as the primary strategy ensuring that all flaws
on the leading sections of the plan are addressed first. Since expansion modifications are devalued, this
leads to a primacy of a “make leading tasks sound, then expand” principle. Since we allow for partially
ordered network specifications, this strategy makes our system more like the SHOP version as described
in [202].

It has to be stressed that these showcases are reduced to their more general search-control aspects. Every
original approach has its own dedicated plan generation principle, application domains, and, last but not
least, algorithmic and representational optimizations. The latter could of course neither be considered when
defining an imitating strategy nor was this intended in the first place. This is in particular the case for
the OCLh approach that draws a lot of its performance from the state automata transformations and for
the SHOP system that includes so much domain-dependent heuristics in its expansion methods that many
people consider it to be a problem-solving programming-language (see respective introductory discussion
in Sec. 1.1.3).

4.2.3 How To Build A Successful Strategy

The main challenge is obviously to find an efficient as possible search strategy for the domain and problem
at hand. This is not trivial and our experimental evaluation (Chap. 6) is merely the “tip of the iceberg”
and covers only a tiny fraction of the combinatorial possibilities of sequenced strategy compounds. In
practice, no strategy component turned out to be obsolete or contra-productive and this leaves the system
designer with the responsibility to determine the best7 strategy for his/her application. However, there are
some domain-independent directives one should adhere to in order to obtain a promising strategy candi-
date.

Elucidate Configuration-Specifics

The first key point can be deduced from our experiences with (the limitations of) inflexible strategies: All
strategy components in all selection functions have to comply with the repertoire of flaw and plan modifi-
cation classes that are issued by the system configuration’s detection and modification generating functions.
If a strategy depends on a specific flaw or modification class that never occurs in the current configura-
tion, it will constantly make no or wrong decisions, depending on the selection definition. It is also worth
noting that the inverse case, that means, the situation in which a strategy definition does not cover a flaw
or modification type is problematic as well. In particular, if a flaw or modification type is not considered

7For the time being, we regard one strategy to be better than another one, if and only if it takes less search nodes to find the first
solution. The objective may however change with the application, for example a solution quality metric has to be optimized, and
the like. Please note that the considerations in this section basically remain valid.
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by the (inflexible) strategy, the strategy’s performance becomes typically un-predictable, since a problem
characteristic is apparently overlooked.

Focus On Primary Strategy

The primary strategy components have to be selected most carefully and this holds for modification selection
as well as for plan selection functions. An ideal (primary) strategy would prefer in every search node exactly
the solution path and thus the three essential factors for choosing a primary strategy are:

1. how many wrong decisions are made,

2. how many options are undecided, and

3. are solutions postponed?

Because no preference decision can be overruled by subsequent strategies, a wrong decision cannot be
counterbalanced. This result alone is obvious, less trivial is however to estimate the amount of wrong
decisions. One guideline are experiments in the application domain in order to determine the optimum
the primary strategy can achieve over a number of settings. If the number of experiments is sufficiently
large, the measured optimum is close to the quality bound of the (combined) strategy and the subsequent
components can only reduce the variance. An empirically sound method is however not always tractable
and the application designer has often to use her/his experience instead.

The number of undecided options often goes hand in hand with the first aspect because a more relaxed
preference is likely to make less wrong decisions by leaving more options un-ordered. The more options
are undecided, the more we can infer from subsequent strategy components but also the more unstable the
combined strategy’s performance can become. We believe that it is advisable to risk stability for the sake of
evading wrong decisions and to balance the strategy with suitable subsequent components. This motivated,
for example, our clustering strategies (4.35).

Last, but not least, it has to be verified that the primary component is able to do the last mile, that means
that it does not postpone close-to-solution plans. This is, of course, also an issue for subsequent strate-
gies but it is a particular problem of the primary components and the worst case scenario with respect to
factor 1.

Consider Strategy Interdependencies

If the primary strategy is appropriate, that means, if the modification selection function is delivering a rea-
sonable selection of options from which the plan selection functions is able to choose a good refinement, it
is the task of the subsequent strategies to improve the composition. Improving the performance is however
nothing else but improving the strategy’s stability, that is to say, reducing the variance that is caused by the
randomisation of undecided options and the variations in the problem characteristics. From these consider-
ations follows that the interdependencies of the strategy composition have to be considered carefully such
that subsequent decisions:

1. do not too frequently contradict primary decisions (which reduces improvement),

2. do make decisions on undecided options, and

3. do narrow down the decisions in a way that is solution-oriented.

For the time being, all three points are subject to experience of the application designer and have to be
checked pair-wise for all deployed components. There are of course obvious contradictions in the strategy
compositions, like the preference and avoidance of the same class of flaws. Many practically relevant inter-
dependencies are however hard to identify and some of them have been mentioned above in the component
definitions. In general it is also particularly important to pay attention to the interplay of modification and
plan selection. If their orientation is identical, a pure depth-first schema emerges; if their orientation dia-
metrically opposes, search becomes implicitly breadth-first. We may assume that neither case is generally
intended.
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As a general recommendation for compositions, we propose to sequence modification-based components
after flaw-based ones. It appears that flaws exhibit a superior predictive power, which qualifies the respective
components for a prioritized position. Since then the primary selection focus on problems and the subsequent
on solution proposals, contradictions are less probable and subsequent decisions become likely available
(multiple modifications are issued for one flaw).

4.2.4 Perspective

The previous sections have covered a number of search control aspects, but the presented solutions can only
be considered a first step on the road to a complete coverage of the planning framework’s capabilities. We
have mentioned the use of iterative search variants and the A∗ algorithm, but there is a large number of
traditional Artificial Intelligence search techniques that is yet to be reviewed [158]. We believe that our
framework is general enough so that all of them can be in principle deployed. Promising future strategy
candidates include the following: learning strategies that are trained on small problem instances of a domain
for inferring branching factor estimates from encountered flaw-modification pairs (cf. [35]); strategies that
concentrate on those flaws, respectively HotSpots or HotZones, that refer to the most recently introduced
plan components (cf. local flaw selection [297]); strategies that focus on those flaws that refer to rigid
symbols (cf. static-first strategy [296]); symmetry detection and avoidance.

It has also to be noted that the presented strategy material is dominantly oriented towards the characteristics
of (hybrid) planning and does not take into account yet the specifics of resource reasoning. Although practi-
cally all of our components are formulated completely in an configuration-independent way (the A∗ variants,
for example, are exceptions that have to be adapted accordingly), we obviously have to develop an appro-
priate strategic advice for the quantitative metrics that come into play when dealing with resource manipu-
lations. An interesting line of research may be HotSpot and HotZone calculations that are not only defined
in terms of commonly referenced plan elements but also take into consideration to which amount a resource
is collectively allocated. Other worthwhile directions in this context are investigating into resource-profile
balancing methods, multi-objective strategies, and, last but definitely not least, optimization of resource
usage.

The proposed sequential composition is of course only one possibility of combining individual preferences.
Multi-agent research and work in distributed problem solving provide a large number of approaches for
distributed decision making [278, Chap. 5]. Our framework represents a programming-oriented view on
the strategies and the sequential aggregation is therefore an obvious combination method. Although our
strategic potential is already unmatched, we think about extending our strategy composition to consensus
strategies (an option is preferred if it is preferred by all strategies), favorite strategies (an option is preferred
if it is preferred by at least one strategy), and even agent-like concepts like voting and auctioning. All of
these extensions are directly implementable in the framework.

Another interesting area of planning strategies will be opened by introducing the concept of dynamic con-
figurations (see also Sec. 3.5.5). As correctness of the planning algorithm cannot be compromised by the
strategy, we can think of changing the strategy at run time, that means, during the plan generation pro-
cess. The are several triggers for changing a strategy imaginable, for example a plateau in the fringe’s
plans’ quality, an increasing undecidedness of the plan selection function, and the like. Switching between
strategies is also an issue when deploying an algorithm in the fashion of least discrepancy search [287].
This topic will involve focusing on the role of the solution selection function, which is not in the scope of
this thesis. During the collection of multiple solutions, this function will play a major role in optimization
applications, etc. For example, it may cause a strategy change due to a plateau or decrease of solution
quality.

The probably most pressing issue for future research activities is concerned with identifying the appropriate
strategy compositions subject to domain model and planning problem characteristics. We believe that there
is a substantial amount of work lying ahead to which the methods of empirical studies will be central. The
corresponding “perspective” section of a later chapter that is dedicated to an experimental strategy evaluation
(Chap. 6) will address this topic in more detail.
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4.3 Summary and Conclusion

This chapter has presented a comprehensive repertoire of plan and modification selection functions that
can be sequenced into more complex strategy arrangements. We have shown several families of compo-
nents; how their approach is motivated, how they are defined and implemented in the planning framework’s
context, and what their contribution to our strategy canon is. We could in particular demonstrate how all
relevant strategic aspects of key approaches in the field are entirely reproducible by our component-based
strategies.

Furthermore, we clearly extended the state of the art by the novel HotSpot and HotZone techniques. Both
methods go beyond every known pre-defined schema, respectively rule-based approach in the area of plan-
ning and scheduling. Together with our ability to model practically every single classical strategy, this gives
further evidence to the potential and expressive power of our refinement planning framework.

It has to be stressed that all presented strategies are complete in the sense that no refinement option is
ignored (cf. Sec. 2.8), they are domain independent, and they are even configuration independent (some
minor exceptions are discussed above). We are therefore confident to have set up a rich catalogue of efficient
strategies for a broad range of application scenarios. Chapter 6 will adopt some strategy instances and
evaluate them experimentally in several domains.
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5 Implementing Planning and Scheduling
Applications

AN AI planning and scheduling application has to be understood as the unity of a plan generation soft-
ware, a domain model, and the appropriate problem specifications. This chapter is consequently
dedicated to the two main aspects of fielding a planning system, namely the question of implement-

ing the formal framework as a concrete software artefact and the issues that arise when modelling concrete
application domains.

The first section will present the PANDA (Planning and Acting in a Network Decomposition Architec-
ture) prototype, an architecture for planning and scheduling systems that addresses key requirements of
real-world applications in a unique manner [229, 230]. The system provides a robust, scalable and flex-
ible framework for planning and scheduling software through the use of industrial-strength middleware
and multiagent technology. The architectural concepts extend knowledge-based components that dynam-
ically perform and verify the system’s configuration. The use of standardized components and communi-
cation protocols allows a seamless integration with third-party libraries and existing application environ-
ments.

The software-technical treatment is followed by sections that describe three concrete domain models. We
will not only present the model components, that means, the underlying language, the task schemata, etc.,
but also explicate their design rationale and describe possible alterations. Sections 5.2.1 to 5.2.3 present
in this sense a satellite observation scenario, a logistics application, and an artificial domain that has been
designed for strategy evaluation purposes.

We finally discuss planning-related software architectures, respectively document our experiences from con-
structing the application show cases. Some remarks on future research directions in these contexts conclude
the chapter.

5.1 System Implementation

While Sec. 2.7 presented an architecture that made theoretical framework operational in a straight-forward
system design, a number of functional and non-functional requirements are obviously not met by such
an architectural nucleus when it comes closer to real-world application scenarios like crisis management
support, assistance in telemedicine, personal assistance in ubiquitous computing environments, and the like.
Like any other mission critical software in these contexts, planning and scheduling systems should feature
characteristics that call for highly sophisticated software support:

1. declarative, automated system configuration and verification – for fast, flexible, and safe system de-
ployment and maintenance, and for an easy application-specific configuration tailoring

2. scalability, including transparency with respect to system distribution, access mechanisms, concur-
rency, etc. – for providing computational power on demand without additionally burdening system
developers

3. standards compliance – for integrating third-party systems and libraries, and for interfacing with other
services and software environments

Each of these characteristics represents a challenge in its own for any software environment, and this is in
particular the case for planning and scheduling applications. This section describes a novel planning and
scheduling system architecture that essentially addresses all of the above challenges, and shows how our
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Figure 5.1: The reference planning process model for PANDA.

formal framework has been incorporated. It shows not only how modern software technology –in particular
middleware and knowledge-based systems– can be successfully applied to a prototypical academic planning
software, but also illustrates how (in principle) any planning and scheduling system can benefit from it. The
resulting system performs a dynamical configuration of its components and even reasoning about the con-
sistency of that configuration is possible. The planning components are transparently deployed, distributed
(including an optimized concurrency), and load-balanced while retaining a relatively simple programming
model for the component developer. Standardized protocols and components finally provide easy access to
other software products and services.

5.1.1 Architecture Overview

In following the proposed design of the generic refinement planning algorithm (Sec. 2.7), the basic archi-
tecture of PANDA corresponds to a multiagent-based blackboard system [208]. The agent societies map
directly on the presented function structure, with the agent metaphor providing maximal flexibility for the
implementation.

• Inspectors are implementations of flaw detection functions. There is one such agent per flaw class.

• Constructors are agent incarnations of the plan modification generating functions. We may assume
that each modification class is represented by one such agent.

• Assistants represent the inference functions and provide shared inference and services that are required
by other agents. Assistant agents propagate implications of temporal action information transparently
into the ordering constraints, simplify variable constraints, etc.

• Coordinators implement the planning strategy functions by synchronizing the execution of the other
agents and performing the modification selection. Currently only one coordinator is allowed in the
system and we call it the Strategy.

Figure 5.1 shows the reference planning model for PANDA, which defines the agent interaction. A planning
cycle corresponds to an iteration of a monolithic algorithm (cf. Alg. 2.2). It consists of two sub-cycles: both
are divided into 4 phases (see Fig. 5.1) in which the agents execute concurrently.

Phase 1: Assistants repeatedly derive additional information and post it on the blackboard. This phase ends
when no member of the assistant community added information anymore.

Phase 2: Inspectors analyze the current plan residing on the blackboard and post the results, that means,
the detected and prioritized flaws, to the Strategy agent and to the constructors assigned to them.

Phase 3: Constructors compute all possible modifications for the received flaws and send them along with
a prioritization to the Strategy agent.
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Phase 4: The Strategy, respectively its incorporated modification selection, compares all results received
from the inspectors and constructors and selects one of the modifications to be executed on the current
plan. A planning cycle is hereby completed and the system continues with phase 1 to execute the next
planning cycle.

Phase transitions are performed only by the Strategy agent when all participating agents have finished exe-
cution. Thus, the phase transitions can be viewed as synchronization points within the planning process. In
fulfilling the contract of the generic planning algorithm, the Strategy agent modifies the plan until no more
flaws are detected or an inspector published a flaw for which no resolving modification is issued. In the first
case, the current plan constitutes a solution to the given planning problem, in the latter case the planning
process has reached a dead end and the system has to discard the current plan and turn to an alternative plan
in the fringe of the search space – we call this a backtracking step, since the consecutive plan under observa-
tion is not obtained from the previous one. The blackboard provides random access to the plans in the search
space, where each plan is stored together with all its derived information and performed modifications. This
structures enable the Strategy agent to navigate the system to any point in the explored plan space it finds
promising.

The following sections will show how the reference planning process model has been implemented by using
middleware and knowledge-based technology. The chosen multiagent-system is based on on an industrial-
strength middleware and uses an explicit knowledge representation in the implementation of the necessary
protocols. A refined version of the reference model will then allow us to exploit agent concurrency more
efficiently.

5.1.2 A Knowledge-based Middleware

Core Components

An obvious implementation for a planning system following the reference process model would still run in
a sole JAVA virtual machine, that is to say, on a single computational resource. This stands in contrast to the
requirements that complex and dynamic application domains demand. For crisis management support, for
example, information must be gathered from distributed and even mobile sources, the planning process re-
quires a lot of computational power, etc. So scalability and distribution play key roles in the proposed system
architecture, while maintaining the (simple but effective) reference process.

The main aspect in middleware systems like application servers is to hide the mechanisms that enable the
distributed handling of objects from the programmer. Thus, it is possible to develop distributed applications
much more efficiently. In other words, such middleware systems make distribution issues transparent to
the programmer. Examples for transparency in middleware systems are location transparency, scalability
transparency, access transparency, concurrency transparency, and the like [82]. Scalability transparency,
for instance, means that it is completely transparent to the programmer how a middleware system scales
in response to a growing load. In summary, middleware systems take care of the complexity of handling
distributed objects and provide an abstract and easy to use Application Programming Interface (API) to the
programmer.

In order to benefit from application server technology, the PANDA system builds upon the open-source imple-
mentation JBoss [245]. The most important components that a JAVA Platform, Enterprise Edition (JAVA EE)
[251] based application server delivers with respect to this work are the following:

• Enterprise JAVA Beans (EJB) are the objects that are managed by an application server. All trans-
parency aspects apply to them. They are the building blocks of a distributed JAVA EE applica-
tion [252].

• The JAVA Naming and Directory Interface (JNDI) is the directory service that enables location and ac-
cess transparency. It provides a mapping between JAVA names and remote interfaces of JAVA objects.
The access to all EJBs and other services of the application server is provided through this interface.
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• The JAVA Messaging Service (JMS) enables asynchronous and location transparent communication
between JAVA components (especially EJBs) beyond virtual machine boundaries. So this service will
be of interest when it comes to communication between the different components of PANDA.

In addition to the features described above, application server implementations also cover aspects like secu-
rity, database access, transaction management etc. They all belong to the JAVA EE specification. However, a
full discussion of their benefits for the PANDA system is beyond the scope of this thesis.

Although the application server technology provides powerful mechanisms, we still need more support for
realizing the multiagent system functionalities of the reference model. Instead of investigating a proprietary
agent life-cycle management and appropriate communication mechanisms, we decided to take advantage of
the work of the Foundation for Intelligent Physical Agents (FIPA), which has been developing standards for
that area since 1996. The second core component that is chosen to implement all agent specific features,
that means, to take care of the agent computing capabilities of the system, is therefore BlueJADE [63].
BlueJADE integrates the well-known multiagent framework JADE (JAVA Agent DEvelopment Framework)
[20] with JBoss. This integration puts the agent-system life cycle under full control of the application server,
in particular all distribution capabilities of the application server thereby apply to the agent societies. Access
to the JADE agent API is provided by BlueJADE’s ServiceMBean interface. It has been selected as the
agent computing platform for PANDA because of the following key features:

• It is a FIPA-compliant agent platform and provides a library of ready-to-use agent interaction proto-
cols. This enables the PANDA system to interact with other multiagent-systems and their services.

• It is a distributed system, that means, its agents can be spread transparently over several agent con-
tainers running on different nodes in a network, including the migration of running agents between
containers. These features can be exploited for distributed information gathering and (automated) load
balancing. It has to be noted that this kind of distribution management is “on top” of the middleware
facilities: agent migration typically anticipates pro-actively the computation or communication load
in a relative abstract manner, while middleware migration reacts on such load changes based on very
low-level operating system specific sensors. It makes sense to provide both mechanisms in parallel,
for example, to migrate scheduling inspector agents, which are known to require much computational
resources onto dedicated compute servers.

• The LEAP extension (Lightweight and Extensible Agent Platform [39]) adds support for ubiquitous
computing. Agents are able to run even on mobile devices such as JAVA capable cellular phones,
PDAs, etc., which are all coveted user-interfaces in many application domains.

• BlueJADE supports application defined content languages and ontologies.

• The system comes with a set of sophisticated graphical debugging tools. This speeds up the develop-
ment process significantly.

The knowledge representation and reasoning facilities that are used throughout the system constitute the
third core component. During its development, the PANDA framework required an increasing amount of
knowledge that represents planning related concepts (flaw and modification classes, etc.), the system con-
figuration (which inspectors, constructors, and strategies to deploy), and the plan generation process itself
(the reference process, including the backtracking procedure, etc.). Most of this knowledge is typically
represented implicitly through algorithms and data structures. To make it explicit and modifiable without
touching the system’s implementation, it must be extracted and represented in a common knowledge base. In
addition, this knowledge base has to use a representation formalism that is expressive enough to capture all
modeling aspects as well as it allows an efficient reasoning procedure. As a result, the system can be config-
ured generically and this configuration can be verified on a higher semantic level.

There is a large number of knowledge representation systems available on the market that promise to meet
the requirements. But since special regard is spent on standards compliance, the DARPA Agent Markup Lan-
guage – DAML [139] has been chosen as the grounding representation formalism for this task. It combines
the key features of description logics [10] with Internet standards such as the Extensible Markup Language
(XML) or the Resource Description Framework (RDF) [174] and – even more important – powerful rea-
soners and other freely available tools exist to integrate the language into applications. In our case, the
knowledge encoded in DAML must be made available to the JAVA programming language. Therefore, a
JAVA object model is necessary that provides mappings in both directions – from JAVA to DAML and vice
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Figure 5.2: Static system structure of PANDA.

versa. The JENA API [178] from Hewlett Packard delivers an in-memory object model of a DAML document
along with a rich API to query and manipulate it. By using DAML as the content language for the BlueJADE
agent communication and also as the language for describing system configurations and communication
means, we achieve a homogeneous representation in the system.

Last, but not least, it is of course necessary to integrate a suitable description logic system to store the
knowledge and to reason about it. The RACER system [125] has the essential capabilities that are required:
a DAML codec, an efficient reasoning component, and a knowledge store based on a client-server architec-
ture.

The System Structure

Figure 5.2 shows PANDA’s static system structure as a UML deployment diagram. The association arrows
indicate which components communicate with each other. Their labels denote the transport protocols be-
ing used. BlueJADE is aggregated by JBoss as a (Service-) MBean. It’s functionality is exposed via the
JadeServiceInterface.

The PANDA Client component represents the client application that controls the PANDA system. Currently,
an RMI1-based communication is used. The PANDA client obtains an interface to the PANDA system by
querying JBoss’s directory service JNDI. But also web-based approaches using SOAP2 or simple HTTP are
supported. In this way, JBoss provides technologies like Web Services and JAVA Servlets3.

Regarding the integration with the JBoss infrastructure, the PANDA prototype defines three specializations
of EJBs for non-agent system components: the interface to the RACER system, to the blackboard, and to the
agent society (from outside the system).

Access to the RACER server is provided by the RacerSessionBean. The main reason for integrat-
ing the RACER system via an EJB proxy is that all depending components – EJBs and Agents – are

1JAVA Remote Method Invocation: see http://java.sun.com/javase/technologies/core/basic/rmi/
whitepaper/index.jsp

2Simple Object Access Protocol: see http://www.w3.org/TR/soap/
3Servlets are part of the JAVA EE technologies, see http://java.sun.com/products/servlet/
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Figure 5.3: The logical layer structure of the agent framework.

able to access it transparently. They do not need to know its IP address or socket number. Further-
more, the RacerSessionBean can be viewed as generic integration approach for all kinds of rea-
soner architectures. The communication between RACER and the RacerSessionBean is realized with
the JRacer client API, which translates JAVA method calls into Lisp function calls. It should be em-
phasized that each component that obtains a reference to the RacerSessionBean gets its own in-
stance – as usual for SessionBean objects. Therefore, queuing of requests is delegated to the RACER
server. In a similar fashion, the BlackboardSessionBean represents a proxy to the blackboard com-
ponent.

The PandaSessionBean represents the facade4 by which the PANDA client configures and controls
the planning process. It uses the RacerSessionBean to derive the agents and their implementations
that must be instantiated and creates them using the JadeServiceInterface. Communication with
the agent framework is done via the JadeBridge class5 of the BlueJADE package, which creates and
accesses agent messages (see below) in an object-oriented manner.

Basically, two main classes of agents exist in the BlueJADE agent container. The first is the class of standard
agents that come with the JADE and BlueJADE software packages. They provide the FIPA infrastructure,
several debugging tools and JADE specific communication services. The Gateway agent’s role is to mediate6

messages between JADE agents and components outside the JADE agent container. It’s counterpart in the
EJB container is the JadeBridge. The Gateway sends and receives stringified messages in the Agent
Communication Language (ACL) via a TCP/IP socket connection.

Custom agents in the PANDA system, that means, all agent types from the reference model, are derived from
the PandaAgent class, which encapsulates low level data conversion and communication mechanisms.
The PANDA agents form the second class in the JADE agent container. The PandaAgent class on its part
is derived transitively from the JADE agent base class Agent, which provides the integration into the JADE
agent container (cf. Fig. 5.3).

The reference model (Fig. 5.1) omits the actual means for calling agents; in a distributed implementation,
these remote calls are typically based on message exchange. From the agent container’s point of view, agents
in the JADE agent container and the PandaSessionBean communicate by using messages encoded in
the agent communication language FIPA-ACL [95] (in short ACL). ACL is a language based on Searle’s
speech-act theory, that means, every message describes an action that is intended to be carried out with
that message simultaneously (for instance, the request “compute detections”). Such intentions are called
performatives. ACL defines formal semantics for performatives [94] that induce basic interaction protocols
upon which more complex protocols like contract nets and auctions are built.

4Cf. the Facade design pattern [103].
5Cf. the Bridge design pattern [103].
6Cf. the Mediator design pattern [103].
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Figure 5.4: The refined PANDA planning process model.

Besides parameters that are necessary for communication like performative name, participant information,
etc., an ACL message includes parameters for describing the content that is intended for the receiving partic-
ipant like the content language the content is encoded in, the domain the content refers to, etc. In order to be
qualified for the use as a content language in an ACL message, a language must meet certain requirements
that are induced by the semantics of the performatives. For example a request requires always at least an
action to be delivered with the content. Otherwise the agent that receives the request does not know what
it is requested to do. Furthermore, when an agent informs another agent about the result of an action, the
content must contain the propositions that represent the result. Thus, a content language must at least pro-
vide representations of actions and propositions, so the agents are able to interact in a meaningful way. The
content language that is used by the PANDA agents is described below.

The Planning Process

Figure 5.4 gives an overview of the refined model of the planning process that was taken as the basis for im-
plementation. The white colored states specify the life-cycle management of a planning session (initializing
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the process, starting planning, suspending it, etc.). Each state transition is labeled with the triggering ACL
message and its originator: sender:performative followed by action or proposition. Senders
can also be described by their class, for example, Worker denotes all worker agents. The same applies
to propositions and actions, for instance, Compute denotes the action Compute and all sub-actions like
Inspect, Construct, etc.

The planning process starts in an artificial undefined state in which all agents are deployed and send
agreements for their initialization process. After that, the Strategy agent informs all other agents, that the
system is initialized, and this is where the reference model started with phase 1: The assistants are requested
to perform their inference on which they have to agree. After their processing (leaving the assisting
state), the inspectors are requested to search for flaws (phase 2), and so on.

Please note that not all states have been modeled in the state machine. Most states are abstract in order to re-
duce complexity of the state automaton while maintaining a degree of granularity that allows the user to mon-
itor the planning process. For example, the state backtracking summarizes all possible sub-states that
describe the interaction between each particular worker agent and the Strategy agent.

The refined planning process model has two major improvements over the reference model: First, it extends
agent concurrency. The reference planning process model in Fig. 5.1, defines the agent classes to execute
one after another, synchronized by phase transitions. In that model, concurrency is only allowed within
a particular phase. But especially between phase 2 and 3 such a synchronization is too strict, because a
constructor must wait until the last inspector has finished, even if a constructor has already received all
flaws it requires for computation. Constructors should therefore be able to decide on their own when to start
execution. The refined process model reflects this by a combined inspecting&constructing state.
The constructors’ behavior has therefore been changed from reactive to pro-active – resulting in a stronger
notion of agency.

Second, an enhanced backtracking procedure allows for the implementation of optimized and more sophis-
ticated reasoning techniques, including worker agents, that means assistants, inspectors, and constructors,
to be equipped with a state history or caches, etc. Such enhanced agents can take advantage of a plans
history such that they can re-play their results if no relevant change happened to the plan and that they are
also able to focus on the difference between a plan and its refinements. In order to keep backtracking con-
sistent, that means, in order to “migrate” the history-aware agents properly onto the new plan generation
path, the worker agents now actively participate in the backtracking process: they have to synchronize via
agreement statements and then notify the Strategy agent when they are finished (cf. state transitions from
backtracking).

Thus, the agent behavior is extended by a backtracking mechanism with three core capabilities: First, a
synchronized restart of the system must be guaranteed, that means, a restart can only take place, if all
worker agents have finished backtracking. Second, the different granularity of the state histories of agents
working in different sub-cycles is considered. Assistants can be executed multiple times in a planning cycle,
whereas Inspectors and Constructors will be executed only once. Therefore, assistants must be backtracked
independently from Inspectors and Constructors. Third, in order to backtrack the system immediately, the
Strategy agent must be able to interrupt the worker agents’ execution, the agents therefore perform their
computations in a non-blocking way.

In summary, the enhanced mechanisms for concurrency and backtracking allow the system to benefit from
early fail decisions in terms of an increased performance: Non-repairable inconsistencies are typically very
quickly detected and processed by constructors.

Ontology-based Components

Like it has been mentioned before, DAML is used as representation formalism to describe and share knowl-
edge in the PANDA system, ranging from flaw communication to system state transitioning. It is one of the
emerging standards in the Semantic Web community for representing and communicating knowledge [139].
It ensures interoperability with third-party systems like RACER and forms the basis for communicating
knowledge among agents. Most important, it enables knowledge to be represented in a uniform, explicit, and
declarative manner, so the system becomes more robust, flexible, and maintainable.
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Figure 5.5: The content language ontology.

To be able to use DAML as a content language in ACL messages (recall the speech act structure), at least
actions and propositions must be able to be represented within DAML [228]. This is sufficient for the needs
of PANDA. Figure 5.5 shows the ontology that provides the concepts to enable DAML-based communication.
Property cardinalities have been omitted for clarity.

Actions can have arguments, for example, the action sub-concept Backtrackmust come with a CycleNumber
the value of which is represented as the XML-schema type decimal. In this way, an action can be com-
pared to a method signature without argument order. In PANDA, every argument of an action is modeled in
the ontology in order to give it a formal semantics. Therefore, in contrast to [228], the argument order does
not have to be considered. Propositions are currently only used to represent ActionResults. The sub-
concept Computed carries the PlanGenerationElements that are the results of the worker agents’
computations, for example, a Constructed proposition has an Modification element as a result.
The content of an ACL message is represented by instances of the PANDA system ontology embedded in a
DAML-document. JENA takes care of encoding and decoding the DAML content of ACL messages. For any
content that has to be sent, its JENA object model is constructed using the described ontology. After that, the
model is serialized and inserted into the appropriate ACL message. The decoding of DAML content works
exactly the opposite way. The object model of the DAML content is constructed by parsing its serialized
representation and can then be queried with the JENA API.

DAML plays its second key role in the automated configuration of the agent container (Fig. 5.6 shows
the underlying ontology). The configuration process is composed of two sub-processes. First, the agents
that are part of the planning process must be instantiated. The object class PandaSessionBean uses
RACER to derive the leaf concepts of PandaAgent and to determine the implementation assignments
ImplementationElements of the worker agents. In the example of Fig. 5.6, the assigned implementa-
tion for the Inspector1 agent is an instance of JAVA class panda.jade.agent.Inspector1Impl.
After being created, the PANDA agents insert their descriptions into the ABox of RACER so RACER keeps
track of the deployed agent instances.
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Figure 5.6: The system configuration ontology.
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Second, the communication links, that is to say, the implementation of the triggering function α , must
be established between the instantiated agents. RACER is used by each PANDA agent on startup to de-
rive its communication links to other agents, that means, from which agents it will receive and to which
agents it has to send messages. This is done by using the ontology to derive the dependencies between
agents from defined dependencies between the flaws and modifications: The system ontology specifies
which agent instance implements which type of Inspector, and it does the same for the constructor
agents. RACER derives from this information which flaw and modification types are going to be generated
by the agent instances, and if the model includes an α-relationship between them (the solved-by prop-
erty), the agent instances’ communication channels are linked. Based upon the subsumption capabilities
that come with DAML and description logics, it is even possible to exploit subclass relationships between
PlanGenerationElements (illustrated by the bold printed concept connections in Fig. 5.6). An ex-
ample for a modification class hierarchy are ordering relation manipulations with subclasses promotion and
demotion. Regarding flaws, the system ontology distinguishes primitive open preconditions and those in-
volving state abstraction axioms (Def. 2.1).

A knowledge based configuration offers even more benefits: Imagine a less informed configuration mecha-
nism, say, reading a respective file in XML format that holds the descriptions on the agents to be loaded and
the message links to be established between them as a representation of the triggering function α . Semantic
verification can then only be based on type checking by, for instance, JAVA class loaders. In the presented
architecture, the system model can be checked on startup for possible inconsistencies in a verification step
of the planning process in state initializing before plan generation starts (cf. Fig. 5.4). An example
for such an inconsistency is a constructor that is missing a link to a flaw (cf. modification-complete system
configurations, Def. 3.3), warnings can be issued for flaws and modifications without implementations of
their generating agents, etc.

5.2 Application Domain Models

In order to illustrate how concrete application domains for the presented planning framework and its con-
figurations are built, we have chosen three showcase domains models as representatives for hybrid planning
problems (see CHYBP in Sec. 3.3.1). Our motivation for this focus is twofold: Firstly, hybrid planning is
the first of our configurations that extends the classical planning methods and therefore nicely demonstrates
the immediate gain of flexibility in terms of modelling and solution generation. The latter aspect will be
elaborately addressed in the experimental strategy evalution in Chap. 6. Secondly, the chosen domain mod-
els represent three facets of dealing with that modelling flexibility and thus give an idea what a modelling
methodology for the higher-level extensions may be appropriate. We furthermore believe that our results can
considerably easier be judged the more the domains for demonstration and evaluation correspond to known
ones.

The main focus in the area of planning system development has recently started shifting from what kind
of knowledge can be processed and used for plan generation to how fast can the planning system come
up with a solution. This trend started with the International Planning Competition (IPC),7 a biennial
event in which the participants are presented a set of domain models and problems to run their planning
software on. The system’s performance is then measured in terms of running time (respectively the number
of problems solved within a given time limit) and solution quality (in most cases the number of plan steps in
the solution). The competition had two major impacts on the planning research community: The rising of a
de-facto standard PDDL modelling-language and the emergence of a set of benchmarks. Both are hardly to
be imagined not to be referenced in any modern paper in the field. It has however also to be noted that neither
the language is undisputed (its adequacy for real-world problems, semantic issues, etc. see Sec. 2.8.1) nor
are the benchmark problems (artificial problems, some considered to be toy examples). But nonetheless
we decided to pick two former benchmark problems and translate them into our extended representation
formalism.

7http://ipc.icaps-conference.org/
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As stated above, the choice of our example domains is motivated in covering specific modelling aspects:
The first domain is consequently a “hierarchization” of the classic Satellite benchmark model and demon-
strates how a PDDL-like representation can be transcribed into our formalism and then reasonably enriched
by action abstraction elements. Our second showcase is called UM Translog and shows the inverse pro-
cess of model acquisition by starting from a pure HTN representation that is augmented by advanced causal
structures along the decomposition hierarchy. The third and final example is an artificial construct, the Criss-
Cross domain, that has been specifically designed for providing problems that exhibit a dense network of
causal dependencies. As the evaluation will point out, these domain models allow for benchmark problems
of various characteristics.

Since a complete discussion of all the details for each domain model is clearly not feasible with the given
space constraints for this thesis, we focus in each section on what we believe are the most relevant facets of
the models.

As a final technical note we would like to point out that we preferred the domains of IPC3 [171] and before
over more recent developments (IPC4 [137]) for two reasons: Firstly, the older domain models were less
fine-tuned to newer PDDL language features of versions 2.2 [80] and 3 [111] with their semantic particu-
larities. This includes time windows, derived predicates, continuous effects, transformational compilation
schemes between language levels, and the like, which to translate into our semantic frame is out of the scope
of this thesis. These concepts do, secondly, for their largest parts not substantially differ from our supported
HTN features. For instance, we ask the reader to compare the arguments along the discussion in [84] on
HTN expressivity with the introduction of the artificial concepts like “struts”, “clips”, and “maintenance
goals” into PDDL 2.1 [99, 100].

5.2.1 Satellite

Introduction

The Satellite domain has been introduced in its original form in the 2002 planning competition. It is inspired
by space-applications that are a first step towards the “Ambitious Spacecraft” as described by David Smith
at the AIPS 2000 conference [239]. It involves planning and scheduling a collection of observation tasks
between multiple autonomous satellites, each equipped in slightly different but possibly overlapping ways.
The equipment consists of observation instruments with different characteristics in terms of data produc-
tions, so-called modes like thermal images, x-ray, etc., and appropriate calibration targets. Satellites are
mobile and can be pointed at different targets by slewing them between different attitudes/directions. A
benchmark problem in this domain is consequently given by an initial state that describes the satellite con-
figurations and phenomenon positions, while the goal state specifies of which observation targets an image
has to be taken in which mode.

Sorts, Relations, and Functions

We adapt the respective STRIPS/ADL variant of the IPC benchmark suite (there also exist models including
temporal and resource reasoning). However, for a proper formal description of the domain we cannot refer to
the IPC domain repository because none of the current PDDL versions supports hierarchical modelling con-
cepts. We will therefore present the Satellite domain, including our modifications to it, in the formalism that
we have introduced in Chapter 2, that means we are defining a decomposition domain model D = 〈M ,∆,T〉
(see Sec. 3.3.1). The domain model in turn is based on a logical model M = 〈D,I 〉 and a language LSat.
The former is assumed to be self-explaining: The carrier sets refer to the real-world objects that the rigid con-
stants are named after (satellites, phenomena, etc.) and the interpretation of the rigid symbols (used in satel-
lite configurations, instrument capabilities, etc.) is given in the problem specification as usual. Finally, a lan-
guage has to be defined by an appropriate tuple 〈ZSat,≤Sat,RrSat ,R fSat ,FrSat ,F fSat ,VSat,TpSat ,TcSat ,ESat〉.
We will incrementally develop some representative pieces from all of the above in the following sections.
Although this showcase will be comparatively small with its 6 sorts, 8 relations, 8 task schemata, and 8
method declarations, we do not present all details here and refer the interested reader to the previously
mentioned material web-page.
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The first thing to do when translating the Satellite domain into the PANDA formalism is to introduce a
sort hierarchy for describing the occuring concepts. While the PDDL encoding defines the types for satel-
lites, directions, instruments, and modes, we feel that this flat sort hierarchy does not capture an essen-
tial feature of the problem instances: the defined directions are obviously divided into the actual obser-
vation phenomena that are of scientific interest and attitude points that are only used for calibration pur-
poses. This aspect is incorporated in the following sort hierarchy by providing appropriate sub-sorts of
Direction.

ZSat = {Instrument,Satellite,Mode,

Calib_Direction,Image_Direction,DirectionA}
≤Sat= {(Calib_Direction,DirectionA),(Image_Direction,DirectionA)}

The sort-annotation A indicates that we consider directions to be abstract entities and that no constant dec-
laration of that sort is allowed. The rationale for this language feature is to identify sorts that are intended
to be exclusively used for structuring the application domain concepts. This supports our modelling tools to
argue about problem and domain consistency.

When it comes to specifying the relation symbols for expressing facts about the world state, a PDDL model
explicitly provides the relation symbols’ signatures in its declaration header. It does however not specify
whether actions are allowed to manipulate the respective interpretations, that means, whether it is flexible, or
if it is a rigid attribute. Studying the model’s documentation suggests the following partitioning of relation
symbol declarations:

R fSat = {pointingSatelliteDirectionA ,power_availSatellite,power_onInstrument,

calibratedInstrument,have_imageImage_DirectionMode}
RrSat = {on_boardInstrumentSatellite,supportsInstrumentMode,

calibration_targetInstrumentCalib_Direction}

The pointing relation is used for expressing that a satellite platform, and with it all on-board instruments,
aim at a given direction. Slewing the satellite therefore controls the orientation of the desired instrument.
The power_avail and power_on symbols reflect that energy is a limited resource on the observa-
tion platform and that instruments consequently have to be switched off before other instruments can be
activated. On-board observation systems typically have to take reference images for calibrating the sen-
sors and if an instrument is ready for taking images, its status changes into calibrated. In a state in
which the image of a phenomenon is finally taken a respective atom over have_image is supposed to
hold.

The elementary operations for this language, ESat, can be directly obtained from these flexible relation
symbols.

The rigid symbol set includes the relation for modelling which instruments a satellite carries, which kind of
sensor the instrument provides, and what the reference object for the instrument is.

In this version of the Satellite domain, no function terms occur in the actions’ preconditions and effects and
therefore FrSat and F fSat are empty sets. We omit the variable symbols here, since they are generated on the
fly during plan generation.
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Figure 5.7: The definition of the switch_on operator schema (screenshot taken from our prototypical
domain model editor).

Tasks and Methods

The final language elements are the operator and task symbols. The former can be directly taken from the
PDDL description:

TpSat = {turn_toSatelliteDirectionA DirectionA ,switch_onInstrumentSatellite,

switch_offInstrumentSatellite,calibrateSatelliteInstrumentCalib_Direction,

take_imageSatelliteImage_DirectionInstrumentMode}
The intended meaning of these five operators is apparent and needs no in-deep explanation. The associated
schema definitions T of the domain model are also straight-forward adaptations of their PDDL counterparts,
for example as the operator that is depicted in Fig. 5.7. It is the primitive task schema switch_on and
represents the operator for feeding energy to an instrument on the observation platform. The action is
executable in a state in which the satellite has energy available, therefore no two instruments can be used in
parallel. The other precondition for the action is that the desired instrument is on board the given satellite
(which is a rigid state feature). Readers that are familiar with IPC’s model suite will notice that we do not
use conditional effects where the competition’s “ADL” variants do. Note that a conditional effect can be
easily translated into a complex task with an appropriate implication postcondition and two methods with
an operator each that introduce the effects for the two cases. Our framework is therefore able to cover
this effect representation, but the intended semantics for the PDDL description – if a state feature does not
hold yet, it does so now – are perfectly covered by our action semantics (see relation update-functions in
Sec. 2.3).

When we analyze the IPC benchmark problems in this domain and their documentation, it occurs to us that
there obviously exists an intended procedure for taking satellite images and that all solutions follow that pat-
tern with minor deviations: Making an observation for a given sensor mode and phenomenon firstly consists
of choosing a suitable instrument, which indirectly determines the satellite that performs the observation. In
a second step, the instrument has to be routed energy to and properly calibrated. The satellite finally slews
in the direction of the target phenomenon and takes the image.

This procedure is plausible enough to be considered not as a specification artefact that is introduced by
the competition initiators but as an underlying principle in the Satellite domain and consequently a clue
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Figure 5.8: The decomposition hierarchy of the Satellite domain (left) and an example for a method decla-
ration (right).

for a well-reasoned action abstraction. An apparent structure is to build an abstraction for each of the two
phases: preparing the instrument and taking the picture becomes an abstract task do_observation with
parameters for the desired phenomenon to observe and the mode to support. The preparation phase seems to
require an abstraction hierarchy on its own, in order to encapsulate the different ways of getting the sensory
system on-line (the instrument is already on and calibrated, some other instrument has to be turned off first
in order to raise the energy level properly, etc.). We therefore introduce an abstract action for activating
the instrument and for dealing with the calibration. The complex task symbols of the Satellite domain are
consequently the following three:

TcSat = {do_observationImage_DirectionMode,activate_instrumentSatelliteInstrument,

auto_calibrateSatelliteInstrument}

We intend to define the complex task schemata T in the domain model in the fashion of ABSTRIPS operator
reductions. That means, we do not employ state abstraction axioms but simply generalize the preconditions
and effects. We may assume that all variables in the following definition are provided by VSat and of the
appropriate sort.

do_observation(iddo,mdo) =〈>,have_image(iddo,mdo)〉
activate_instrument(sai, iai) =〈on_board(iai,sai),power_on(iai)〉

auto_calibrate(sac, iac) =〈on_board(iac,sac)∧power_on(iac),calibrated(iac)〉

Given these complex and primitive tasks, the methods of the domain model set up a decomposition hierarchy
that implements the different observation procedures. Figure 5.8 displays this hierarchy on the left. The first
level in the tree-like representation are the complex task schemata (a blue disc labelled with “T” and a super-
script “C”). Each sub-tree stands for the declared decomposition methods in the domain, symbolized by vio-
let “M” icons. For example, the selected method in the figure is named method_do_observation_ai_tt_ti,
which is the mnemonic for “implementing the observation task by an activation, a turning operation, and tak-
ing an image”. This method is partly displayed on the right hand side of the figure. Its formal specification is
the following (variable symbols and plan step prefixes are simplified for better readability):
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Figure 5.9: A three-level decomposition of the complex task do_observation.

mdo_observation_ai_tt_ti = 〈do_observation(i,m),
〈 {a :activate_instrument(a :s,a : i), b :turn_to(b :s,b : to,b : from),

c :take_image(c :s,c :dir,c : i,c :m)},
{a :activate_instrument≺ b :turn_to, b :turn_to≺ c :take_image},
{i=̇b : to, i=̇c :dir,m=̇c :m,

b : to ∈̇Image_Direction,

a :s=̇b :s,a :s=̇c :s,a : i=̇c : i,b : from ˙6=b : to},
{a :activate_instrument

power_on(a:i)−−−−−−−−→ c :take_image,

b :turn_to
pointing(b:s,b:to)−−−−−−−−−−→ c :take_image}〉〉

The first line of variable constraints thereby relates the abstract task’s parameters with the expansion net-
work, the second and third establish a consistent parameter binding. Figure 5.9 depicts one way of decom-
posing an abstract observation task. The light blue triangle thereby represents the just presented method.
The curved arrows indicate an “inherited” causality, that means, the have_image state feature is an effect
of the complex do_observation but it is eventually provided by the operator take_image. Instrument ac-
tivation is decomposable into switching on and performing an abstract calibration procedure (red expansion
network). The last complex task in the decomposition hierarchy is finally decomposed into an operator for
slewing the satellite into the appropriate direction and then calibrating the instrument on that phenomenon.
Note that it takes only three decompositions to produce a consistent plan that implements an observation,
a plan with 6 primitive actions that are completely causally linked and the parameters of which are consis-
tently (non-) co-designated. The red stars in the figure mark the preconditions of the turn_to operators,
which introduce the most important source of combinatorial problems in this domain, namely the question
how to establish a pointing state feature. If the depicted decomposition is pursued, an observation is
self-contained such that the turning operation after the calibration step is properly causally linked and fully
supported from within the surrounding network steps. If a plan, however, contains a number of observation
operations that are only developed to the “blue” level, there is typically some confusion about causal support
with respect to the orientation of the satellite. The following table displays the possibilities of implementing
an observation in the presence of other observations.

A problem in the Satellite domain is typically given by abstract observation tasks. The hybrid domain
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model offers four implementation variants, the applicability of which depends on the observation con-
text:

1. First, the instrument is activated, then the satellite turns into the direction of its scientific interest and
takes the image. This is the base case for isolated (sub-) problems as explained above and showed in
Fig. 5.9.

2. The instrument might have been used in a previous observation and is still calibrated. In this case it is
sufficient to slew the satellite and take the image.

3. Problems with many jobs may take advantage of decompositions that provide an activation-imaging
skeleton for which the slews can be filled in later by task insertion modifications. This method there-
fore provides the causal information that connects activation and usage of the sensor.

4. If the configuration supports task insertion (like in the previous case) or if we have to deal with
exceptional situations in which more than one image is required of a phenomenon, the fourth variant
solely consists of a direct translation into taking the image.

Activating an instrument is implemented by two alternative methods: The first is to switch the required
instrument on and to initiate the calibration procedure, while the second method covers those cases in which
energy has to be re-routed from a currently on-line instrument before.

The last two methods implement the calibration process, which is either atomic in the context of other ob-
servation tasks or has to perform a preparatory slew into the calibration direction.

Concluding Remarks

It is certainly an inconvenience of the Satellite domain that it induces refinement spaces that obviously
contain a large number of isomorphic plans. While it is a general property of hybrid domain models that their
decomposition methods are necessarily reproducible via task insertion, this model is furthermore focused
on exactly one complex task. The different methods do thereby not provide alternative ways of performing
the task but define the configuration of the observation process: with or without calibration, with or without
a previously used instrument, with or without preparation slews, and the like.

On the other hand, the Satellite domain has several nice properties due to which it qualifies as an interesting
demonstration and benchmark domain for our hybrid planning configurations.

The first advantage is the intuitive simplicity of the application domain and the underlying principles. This
also holds for model extensions like incorporating temporal information, addressing energy consumption,
etc. Any modification can easily be explained and its effects on the solution generation process investi-
gated. It is also a relatively simple task to formulate problems, to validate solutions, and to judge prob-
lem complexity as well as solution quality. In contrast to other simple benchmark scenarios, planning for
satellite observations exhibits significantly more variety and extension options (cf. stacking of coloured
boxes).

A second characteristic is the applicability of hierarchical modelling concepts. The Satellite domain does
not only naturally motivate task abstraction but it also offers several reasonable ways to implement that.
The presented decomposition hierarchy is of course not the only plausible model and it would be an in-
teresting research question to quantify the impact of changing that hierarchy. While there are obviously
alternative method configurations with respect to the arrangement of tasks, there is also the possibility of
“deepening” the hierarchy and that of “flattening” it. The latter implies to reduce the number of pre-defined
task implementation alternatives and to leave closing the preconditions solely to the respective modification
generators.

A last observation on the Satellite benchmark problems anticipates our experimental evaluation (Chap. 6).
This domain allows to control problem complexity, for example in order to determine the scaling behaviour
of a strategy, in several dimensions. For example, the mildly sophisticated “Copy’n’Paste” complicating,
that means, duplicating of observation jobs and scientific equipment, leads to an increasing number of self-
similar sub-problems. Although this may be the intended scientific focus, it has to be taken into account that
this kind of complexity may not favour a generally well performing search strategy. It makes solving ten
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times more observations as “more difficult” than stacking ten times more boxes. In contrast, we can define
benchmark problems with an increasing number of observation jobs that require an increasing number of
modes and instruments on a stable number of satellites. This induces an increasing number of interacting
sub-goals and causal interferences. As a consequence, the refinement space grows but its solution density de-
clines. A third aspect is the amount of overlapping target requirements, respectively instrument capabilities:
if a set of observations can be performed by single platforms sequentially as well as by multiple platforms
in parallel, optimality of the solutions becomes more and more an issue.

5.2.2 UM Translog

Introduction

The UM Translog domain describes an urban transportation and logistics scenario that has been first intro-
duced as a challenging benchmark problem for the UMCP planning system at the University of Maryland -
hence the name. It covers scenarios in which different types of transportation goods are delivered to cus-
tomer locations by various means (trucks, trains, etc.) via appropriate infrastructures (roads, railroad lines,
transport centers, etc.). Among the obvious tasks of planning for loading the good, finding a path through
the infrastructure, and finally managing the delivery, additional requirements come into play: the particu-
lar goods demand particular transportation means and procedures. Hazardous goods demand specific (un-)
loading protocols, valuable item transports have to be secured and insured, livestock needs to be fed, etc.
A problem specification in this domain consists typically of a number of delivery jobs of a specific good
from one customer location to another. The more jobs are given, the more becomes solution quality an
issue.

In its original version it is specified as an HTN domain model and the authors of [8] argumented convinc-
ingly in favour of such somewhat realistic, more knowledge-rich scenarios for comparing planning systems’
performance. Furthermore, Erol used it in his thesis [83] as a showcase for the expressivity of his approach
and for the adequacy of an HTN representation. Nonetheless, the IPC community decided to adhere to the
commonly agreed, non-hierarchical PDDL standards and therefore a PDDL-conforming version has been
issued for IPC 2002 [290]. While the hierarchical version uses HTN methods to capture the specific trans-
portation procedures when decomposing an abstract delivery task, the “flat” PDDL version synthesizes causal
chains for delivery goals.

Our UM Translog interpretation as a hybrid domain model consequently starts from the HTN specification
of the UMCP distribution and complement it step-wise by task preconditions and effects. If we call the above
modification of the Satellite domain a hierarchization then this section describes a “causal grounding” of an
HTN model.

Sorts, Relations, and Functions

The HTN formalization of UM Translog as well as its PDDL translations support a simple type system in
order to express sub-sort relationships. Both variants, however, try to employ the notion of a type hierarchy
by additional predicates that simulate type information, similar to the representation of a sorted logic by
predicate logic with designated sort predicates. There is, for example, a defined sort Route and a predicate
Rail−RouteRoute for representing the type of railroad lines (the former is also a so-called primary type).
In our formalism, this implicit type information becomes an explicit sort declaration; we will discuss the
consequences of such a translation in Sec. 5.2.2. We defined sub-sort relationships according to the usage of
the non-primary type predicates in the expansion network. Along the decomposition hierarchy, a transporta-
tion vehicle is, for example, first specified to be a train car and in the specialized train-car handling methods
it is assigned to be the argument to a liquid transport type predicate. From this information we deduce that
there has to be a sort for categorizing these objects, name it Tanker_Traincar, and place it in the sort
hierarchy accordingly.

The UM Translog sort hierarchy is however too large to be displayed here, Fig. 5.10 therefore depicts a
simplified model fragment that contains about two thirds of the 96 sorts in the complete version (with a
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maximum depth of 7). Regarding the geometric shapes, sort names in ellipses denote abstract sorts while
sort names in boxes represent sorts for which constants can be provided.

The coloured areas symbolize four key areas of the model: The blue rectangle at the bottom backdrops all
sorts concerning the modelling of transportation routes and locations. Note the use of multiple super-sorts:
the Hub concept represents the property of transportation centers to serve as a central distribution facility
with storage rooms, etc. Blue triangles mark the two prominent top-level sorts for all kinds of transportation
vehicles and packages (transportation goods). Finally, red triangles are the entry points in the hierarchy for
all sorts that represent packages and vehicles with a given physical or “special” property. For instance, the
physical property Regular denotes objects that are approximately cuboid, stackable, and do not need a spe-
cial treatment. But it is also used for those transportation devices and vehicles that are able to deal with these
objects. This peculiarity has been adopted from the original domain description.

Let us run through a small example for declaring two object classes in the UM Translog domain: the au-
tomobile transport. For providing the transportation means, we define the sorts Thing, Object, and
Vehicle. A physical property of such a vehicle are the specifics of automobile transports, therefore we
introduce the sort-path with Thing, Object, Physical, and Auto. The common sub-sort of Vehicle
and Auto is given by Auto_Vehicle. This class represents all kinds of automobile transports, for in-
stance Auto_Truck.

Concerning the relation symbols, the full domain includes a total of 29 of which 8 are rigid. Like we did
for the sorts, we will focus on a representative fragment of the complete set of definitions. Let us begin
with the state-independent relations. They basically cover two static aspects of the logistics scenarios:
the environment topology and the relationships between transportation means, their infrastructure, and the
transported items.

RrUMT ⊃ {ConnectsRouteLocationLocation,

In_CityCity_LocationCity,In_RegionCityRegion,

ServesTCenterLocation,

At_EquipmentEquipmentEquipment_Position,

PV_CompatiblePackageVehicle,RV_CompatibleRouteVehicle}

The first four relations thereby deal with abstract transportation routes between the different location types.
An airport will, for example, be connected in this sense to another airport via an appropriate Air_Route
instance. Relations over the symbols In_City, In_Region, and Serves define the geography of a
UMT Translog scenario. Fig. 5.11 depicts an example for such a topology: The ellipses stand for three
representatives of the largest geographic entities, the regions. A region organizes its associated cities (boxes),
which in turn group the customer sites (stars) and local transportation centers. The latter are represented as
airport and railway icons at the edge of one of the city symbols. The triangle symbolizes a transportation hub,
which is not located in a specific region or city but which is responsible for several regions. The intended
structure is that transportation centers “serve” one or more cities within a region, while the hubs deal with
the inter-region traffic. While Connects specifies the inter-city and inter-region routes, all locations within
a city are assumed to be implicitly interconnected. The At_Equipment is rigid, because the equipment
in the UM Translog context is stationary, for instance, cranes or conveyor belts. Since these devices can be
mounted only in specific places, an extra location sub-sort has to be defined.

The relations for expressing compatibility finally relate package objects with vehicle objects that can handle
the package (PV_Compatible), respectively routes with vehicles. In the original model, secondary types
were specific constants assigned via an appropriate predicate to the respective object. A compatibility can
therefore be expressed as an atomic fact on the level of secondary types. Our language does not support
comparable expressions on the sort level and therefore our initial design choice, namely to use multiple in-
heritance for expressing secondary types, appears to be some drawback: it requires compatibility statements
for every respective pair of objects. We will take up this issue again in the discussion at the end of this
section.
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Figure 5.10: A fragment of the UM Translog sort hierarchy.
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Figure 5.11: The geographic elements of a UM Translog scenario: regions, cities, transportation hubs, train
stations, and airports. The red stars represent relevant locations within the city limits, for ex-
ample customer sites.

Concerning the dynamic state attributes, the following flexible relation symbols are an assortment of prop-
erties of packages:

R fUMT ⊃ {At_PackagePackagePackage_Storage_Position, DeliveredPackage,

Fees_CollectedPackage,InsuredValuable,Have_PermitHazardous}

The first two relations describe the most important facts about packages, namely where the package is
currently located and whether it has reached its destination location and is thereby Delivered. During
their transport, some more package properties are monitored: An atom over the Fees_Collected relation
documents whether the customer has paid the fees for the transport, valuable goods have to be additionally
insured, and hazardous material requires a specific permission for its transport.

The remaining flexible symbols are used to describe properties of the transportation vehicles. It is worth
noting that the original UM Translog version did not model any dynamics in the environment’s locations like
loading staff, etc. A small fraction of the defined properties are the following:

R fUMT ⊃ {At_VehicleVehicleVehicle_Position, Connected_ToTraincarTrain,

Decontaminated_InteriorVehicle, Guard_InsideArmored,

Ramp_ConnectedPlane_RampAirplane, Clean_InteriorVehicle,

Trough_FullLivestock, Warning_Signs_AffixedVehicle,

Hose_ConnectedTanker_VehicleLiquid, Valve_OpenTanker_Vehicle }

Among more general properties like vehicle positions and train configurations, these relations represent
safety conditions of special transport. This includes the decontamination for hazardous substance transports,
the proper handling of livestock, or the operating of liquid loads. The latter, for instance, requires that the
respective valve is not opened until a suitable hose is connected in order to fill the tanker. Finally, there is
one rather “technical” relation, a flexible symbol that is used in many contexts. The relation Available :
Thing represents a semaphore for allocating infrastructure and equipment, as well as it denotes temporarily
unreachable locations, blocked routes, broken equipment, etc.

Since we re-modelled the original (purely symbolic) HTN domain, this model does not contain any func-
tions. The more recent UM Translog versions are however resource enhanced and take into account temporal
information as well as storage limits of vehicles and transportation centers. Upgrading our domain model in
this direction is part of future work.
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Tasks and Methods

The central topic in UM Translog is bringing packages from one location to another and while doing
so, always complying to the required security protocols. The sort and relation definitions we presented
so far already suggest that the action repertoire of this domain model will be very rich and quite real-
istic. The complete model contains 51 primitive operators and 21 complex tasks, for which in turn 51
decomposition methods are provided. The thereby induced decomposition hierarchy is up to 10 expansion
steps deep. We will detail some parts of this hierarchy in order to demonstrate the model design princi-
ples.

There is a noteworthy observation to be reported from our work of translating the domain: From the point of
view of knowledge engineering, we started out from an HTN decomposition hierarchy that ends in primitive
task nodes. From these complex task implementations we re-engineered the appropriate abstract precondi-
tions and effects that are consistent with the pre-defined primitive task networks, a process that resembles
the automated ALPINE abstraction computation [153]. At the same time, we experimented with intuitively
plausible conditions for the existing complex tasks and tried to propagate them in a top-down manner. Both
resulted in an iterative process in which causal information is propagated up and down the decomposition
hierarchy. However, it turned out that this method has its limitations, since the original domain model was
not set up according to plausible implementations that finally constitute something in the sense of our re-
finement notion. HTN hierarchies rather tend to focus on structuring the search space and as a consequence
the re-engineered complex task conditions of many “implementations” turned out to become empty. When-
ever that happened, we tried to partition the methods according to plausible implementations and introduced
intermediate helper tasks. If that did not produce a satisfactory hierarchy, as a last resort, we modified the
operator description and repeated the re-engineering process.

Let us therefore begin with most important complex task that is the entry point in the decomposition hier-
archy with respect to an HTN problem definition: the abstract transportation process. For variables p of
sort Package and o and d of sort Location, a transport is defined as it is common for movement-like
schemata as follows:

transport(pPackage,oLocation,dLocation) =
〈At_Package(p,o),¬At_Package(p,o)∧At_Package(p,d)〉

The intended semantics of this schema is of course that the package is to be transported from one (customer)
location o to another (customer) location d. On this level of abstraction, neither the transportation means nor
a path through the urban infrastructure is relevant, the only significant state change concerns the package’s
position. We provide exactly one refinement, in which the transport activity is decomposed into a task
network with three sub-task: the package has to be picked up at the customer’s site (taking order, preparing
transport), is then physically moved (“carrying”) to the target destination and finally officially delivered
(handing over, documenting receipt, follow-up procedures). In our concrete modelling language, the method
is defined as follows:

mtransport_pi_ca_de = 〈transport(pPackage,oLocation,dLocation),
〈 {a :pickup(a : p),b :carry(b : p,b :o,b :d),c :deliver(c : p)},
{a :pickup≺ b :carry,b :carry≺ c :deliver},
{p=̇a : p, p=̇b : p, p=̇c : p,o=̇b :o,d =̇b :d,d =̇c : p,o ˙6=d},
{a :pickup

Fees_Collected(a:p)−−−−−−−−−−−−→ c :deliver} 〉 〉

All the technicalities concerning the various procedures are delegated to the implementations of the sub-
tasks; the co-designation constraints thereby ensure that the package identity is passed properly. The last
non-codesignation constraint may seem superfluous, but remember that we cannot enforce parameter in-
equality. On the other hand, we could define an alternative transport implementation this way that han-
dled transports within a single location. This made sense either in order to model personnel activity at
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Figure 5.12: The decomposition hierarchy for the complex task schema transport and its definition.

a customer’s site or in order to define termination networks for decompositions that are specified recur-
sively.

Figure 5.12 shows the PANDA domain editor with the transport task’s schema definition on the right and the
decomposition hierarchy on the left. The latter shows for each of the three transport sub-tasks, pickup,
carry, and deliver, their respective methods. While the implementations of the handover procedures,
for which pickup and deliver stand, are organized according to the package classification, the actual
transport procedure, encoded by carry, is primarily structured along the possibles trajectories of the pack-
age within the defined infrastructures.

The pickup and deliver task schemata are simply defined as follows:

pickup(pPackage) = 〈¬Fees_Collected(p),Fees_Collected(p)〉
deliver(pPackage) = 〈Fees_Collected(p),Delivered(p)〉

In our logistics context, these two tasks implement the business rule: get payed in advance and do only
deliver payed packages. The methods depicted in Fig. 5.12 put this rule into context for valuable and
hazardous transport goods. That means, after the fees have been collected, an insurance has to be contracted
and a transit permission has to be obtained, respectively. The appropriate delivery procedures require these
facts as their preconditions and thereby make sure that the package is insured or registered during the whole
transport activity.

Following the tradition of the original UM Translog domain models, the methods that are provided for the
complex task carry cover three possibilities to traverse a given infrastructure. The first is available if there
exists a direct route to the target location, the second involves intermediate transport centers, and the third
handles cases that require inter-region hubs. Our design for the methods for the carry task is sketched in
the screenshot depicted in Fig. 5.13. On the first two levels of decomposition, the alternative for direct routes,
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Figure 5.13: The schema definition (right) and decomposition hierarchy for the complex task schema
carry_direct (left).

carry_direct, is transferred into an auxiliary task schema, which introduces the transport vehicle and
checks for compatibility between package and vehicle. For the auxiliary schema two implementations are
provided: either the package is loaded in the vehicle (still abstract), then the vehicle travels to the destination
location, and finally the package is unloaded, or the vehicle has to be moved to the customer location first.

Abstract loading and unloading tasks have a precondition/effect structure like an action for movement, since
the package is relocated inside and outside the vehicle:

load(pPackage,vVehicle, lLocation) =
〈 At_Package(p, l)∧At_Vehicle(v, l)∧PV_Compatible(p,v),
¬At_Package(p, l)∧At_Package(p,v) 〉

unload(pPackage,vVehicle, lLocation) =
〈 At_Package(p,v)∧At_Vehicle(v, l),
¬At_Package(p,v)∧At_Package(p, l) 〉

The decomposition hierarchy for the loading procedure is displayed in Figure 5.14. All tasks on this ex-
pansion level are primitive and reflect the different kinds of loading activities, ranging from loading regular
packages in trucks to filling liquids in tanks and driving livestock into transport vehicles. A simple example
for the primitive loading operators is also depicted in the figure. Flatbed transport vehicles, for instance,
have to be loaded with the assistance of a crane. This specific Equipment is used for bulky “packages”
like wood, etc. Readers who are familiar with robotic application scenarios will immediately recognize the
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Figure 5.14: The decomposition hierarchy for the complex task schema load (left) and the operator schema
definition load_package (right).

usual operator structure.

pick_up_package_ground(pPackage,cCrane, lLocation) =
〈 Empty(c)∧Available(c)∧At_Equipment(c, l)∧At_Package(p, l),

+At_Package(p,c) −Empty(c) −At_Package(p, l) 〉
It is also easy to verify that with this loading procedure and a symmetrical unloading operator, the depicted
method method_load_flatbed implements the abstract loading task.

Let us finally inspect the tasks for actually moving the transport vehicles. The complex task move is thereby
abstracting away the concrete location connections:

move(vVehicle,oLocation,dLocation) =
〈 At_Vehicle(v,o), ¬At_Vehicle(v,o)∧At_Vehicle(v,d) 〉

Its decomposition hierarchy is depicted in Fig. 5.15: from the concrete movement point of view, all trans-
portation vehicles behave essentially the same way and are therefore commonly represented in the following
primitive operator.

move_vehicle_no_traincar(vVehicle,oLocation,rRoute,dLocation) =
〈 Connects(r,o,d)∧Available(v)∧Available(r)∧RV_Compatible(r,v)∧

At_Vehicle(v,o),
+At_Vehicle(v,d) −At_Vehicle(v,o) 〉
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Figure 5.15: The decomposition hierarchy for the complex task schema move.

The only exception are train cars, which are moved indirectly by the movement of their pulling train. A train
car “appears” at its destination location at the moment it is detached from its train. An implementation of
this movement is specified by the following method:

mmethod_helper_move_traincar =
〈 helper_move_traincar(tcTraincar, tTrain,oLocation,dLocation),
〈{a :move(a :v,a :o,a :d),b :attach_train_car(b : t,b : tc,b : l),

c :move(c :v,c :o,c :d),d :detach_train_car(d : t,d : tc,d : l)},
{a :move≺ b :attach_train_car,b :attach_train_car≺ c :move,

c :move≺ d :detach_train_car},
{tc=̇b : tc, tc=̇d : tc, t =̇a :v, t =̇b : t, t =̇c :v, t =̇d : t,
o=̇a :d,o=̇b : l,o=̇c :o,d =̇c :d,d =̇d : l,

o ˙6=d,a :o ˙6=a :d },
{a :move

At_Vehicle(b:t,b:l)−−−−−−−−−−−→ b :attach_train_car,

a :move
At_Vehicle(c:v,c:o)−−−−−−−−−−−→ c :move,

b :attach_train_car
Connected_To(d:tc,d:t)−−−−−−−−−−−−−→ d :detach_train_car,

c :move
At_Vehicle(d:t,d:l)−−−−−−−−−−−→ d :detach_train_car} 〉 〉

The task expression a :move is intended to find the appropriate train to which the transporting train car is
attached by b :attach_train_car. After that, the train moves to the given destination location d, where
the train car is finally detached. The variable constraints thereby fix coherent bindings and the causal links
provide a appropriate commitment within this implementation. During the movement, the train car is not at
any specific location and changes from a state of being somewhere into a state of being connected to some
train. The attachment operators in the following definitions detail that:

attach_train_car(tatc : Train, tcatc : Traincar, latc : Location) =
〈 At_Vehicle(tatc, latc)∧At_Vehicle(tcatc, latc)∧¬Connected_To(tcatc, tatc),

+Connected_To(tcatc, tatc)−At_Vehicle(tcatc, latc) 〉
detach_train_car(tdtc : Train, tcdtc : Traincar, ldtc : Location) =
〈 At_Vehicle(tdtc, ldtc)∧Connected_To(tcdtc, tdtc),

+At_Vehicle(tcdtc, ldtc)−Connected_To(tcdtc, tdtc) 〉

The remaining parts of the task model deal with alternative implementations of the presented procedures.
In general, there is a large number of switching and antagonistic action schemata, that means, action defi-
nitions that solely negate their precondition. Examples are collecting fees, obtaining permits for hazardous
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transports, connecting and detaching equipment, and affixing warning signs. All these tasks basically have
the form of the following operator schema for opening and closing vehicle doors:

open_door(vod : Regular_Vehicle) = 〈¬Door_Open(vod),+Door_Open(vod)〉
close_door(vcd : Regular_Vehicle) = 〈Door_Open(vcd),−Door_Open(vcd)〉

With this definition, we conclude our presentation of the action model. Space limitations made it necessary
to focus this section on 8 complex (5 methods) and 7 primitive task representatives, which is only one sixth
of the model. For the complete domain specification, again, we refer the reader to the technical documents
on our website.

Concluding Remarks

As it has been intended by the authors of the original versions [8, 290], the UM Translog domain model
is certainly a step into a direction that leads away from playing with toy-problems in toy-domains onto a
path towards real-world planning applications. It is a reasonable benchmark because it allows to define a
variety of completely different problem structures, ranging from singular transports to groups of jobs, from
a sparse infrastructure to large, highly interconnected environments. Its diversity is one key argument to
prefer this domain over small-sized benchmarks that define their challenge quality over mere sub-problem
replication. It is also very demanding in terms of the minimum plan length; a simple problem that requires
one regular package to be delivered by a truck has a minimum length of 11 plan steps and if, for instance,
an armored transport is involved a solution consists of at least 16 steps. Consequently, an interaction of
multiple delivery jobs typically occurs over relatively long paths of actions, either as a conflict situation or
as a mutual dependency due to joint resources.

The commonly agreed advantage of the the UM Translog domain is that it features a mixture of complexity
and accessibility. First, it is impressively large in terms of number of action schemata and object types while
it is at the same time reasonably structured as regards to independent transportation methods, infrastructure,
and geography. Second, the model is close to realistic but at the same time it remains easily adjustable with
respect to the supported domain features, for example, temporal information can be introduced, enhanced
loading procedures can be added, and the like. However, we feel the definitive need for reconsidering these
advantages within the AI planning community. A fairly obvious counter-argument against the value of “be-
ing large” is the question of how to define difficulty for planning benchmarks in general and for UM Translog
in particular. As Helmert already showed in [132], the IPC version of this domain is on the borderline be-
tween NP and P, depending on whether or not movements are resource-constrained. According to this result
the “operator base” of our translation, which does not define resources yet, is of a lower-order polynomial
time complexity with respect to the problem of plan existence and becomes NP-complete for finding optimal
plans with limited resources. As useful as such complexity considerations may be, they do not take into ac-
count the impact of procedural knowledge in the respective domain models (for instance, [84] only presents
a general classification of HTN planning in terms of expressivity). In addition, the abstractions made for a
complexity classification largely prevent that the respective result can be applied to a difficulty assessment
of concrete problem instances: for example, it is not clear whether mixing an increasing number of trans-
port types introduces more effort for finding a solution than increasing the distance of the target locations
for a stable number of jobs. For the most part, the question of problem difficulty (within a certain class of
problems) remains open, or, to put it more provocatively, it is harder to define a set of progressively more
challenging UM Translog scenarios than just dropping more blocks on the table.

In contrast to the conciseness of the previously presented Satellite domain model, consistency and plausi-
bility become salient issues for UM Translog. With making the translated sort hierarchy visually accessible
by our editing tools, it becomes apparent that the originally intended typing system needs some re-work.
As it has been noted above, the knowledge engineering process behind the domain definition for the UMCP
system led to a task hierarchy that evidently has been designed (probably in a top-down manner) to the
purpose of an efficient task decomposition and not in the view of implementation abstractions. That means
that, for instance, the ad-hoc typing predicates are only used consistently along a decomposition path and
not cross-method-wise. Using the networks’ formula constraints as a suggestion for the tasks’ intended
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preconditions and effects8 also revealed the problem that many causal commitments on the abstract level
cannot be reproduced by the operators in the respective implementations. As a result, practically every task
network’s complex task can only be defined with trivial preconditions and effects. We consequently had to
re-organize, for example, the carry definitions accordingly. It has also to be noted that the weak semantic
support for UMCP models obviously could not even prevent typographical errors in the specification files
such that we occasionally encountered task conditions that used predicates with the wrong signature, and
the like. There also exists one translation into the OCLh formalism [182] but these authors did not report
to have encountered any semantic problems. We must assume that they re-built the model solely from the
textual documentation and the operator schema definitions.

Regarding the plausibility or adequacy of a domain model, we have to admit that the current version of
the UM Translog model is not completely satisfying. The first unresolved issue is some sort of obscu-
rity in the sort hierarchy with respect to modelling “specialities” and “physical properties” of packages
and vehicles. Some of the latter have to be moved into the special feature category in order to make
the model conceptually clearer. In any case, the model should provide a more coherent relationship be-
tween “physically” implied compatibilities of vehicles and packages. For example, liquid packages require
a tanker transport, while being a car package and being able to transport them is represented by the literally
identical secondary type. Similar observations have been made by the translation into the OCLh formal-
ism [182].

It is also questionable whether or not a property should be modelled as a sort in the first place. The original
model suggested this large number of respective type predicates and was thereby able to verify sort relation-
ships explicitly in precondition formulae and task network constraints. Although our translation into the sort
hierarchy lost that flexibility of annotating type information and required the somewhat clumsy work-around
with atomic compatibility formulae in the initial state for each individual, our modelling framework however
provides an extremely valuable and effective mechanism for verifying the model’s consistency. Concerning
the compatibility information in the initial state, note that although it is defined on a per-instance basis, de-
termining the concrete information is computationally tractable because the respective relation symbols are
rigid ones. As a “meta-remark” on the issue of properties versus types, we believe that there is a mis-balance
between the sort hierarchy and the relation definitions: Specifying three times more sorts than relations in-
dicates to us that the former need to be reduced in favour of the latter.

The most apparent implausibility could be fixed, though. The UM Translog in the UMCP distribution was
not able to solve problem instances in which two transport tasks had their origin in the same location, or
in which packages had to be picked up in the context of an overlapping jobs. Also, vehicles were not
allowed to be positioned on the pick-up location and that made follow-up jobs impossible to plan for. Since
we intended this domain to be processable in a reasonable way by an HTN planning configuration (see
evaluation chapter 6), we introduced appropriate methods that perform just the loading procedure, methods
that make the vehicle drive to the customer location before loading, and so forth.

The final conclusion on the UM Translog domain is twofold: the logistics scenario is a very appealing
application environment and provides many challenges. The problem structure is very rich and very com-
plicated “real-world” situations can be specified. On the other hand, the domain is not very clearly laid out
and there are many errors a model or problem writer can introduce, from minor inadequacies to substantial
inconsistencies.

5.2.3 CrissCross

Introduction

While the above domain models are inspired by real-world application scenarios, the CrissCross domain
model describes an artificial environment that has been specifically designed to provide a clean experimen-
tal frame for evaluating hybrid planning strategies. Its rationale is the following: What makes problems
particularly challenging in the context of hybrid planning is a decomposition hierarchy in which a large

8In the UMCP modelling formalism, atomic conditions can be defined to hold between task expressions or before or after a task
expression. We derived from these sort of constraints what the intended causal structure in the logistics scenarios has to be.
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number of causal interactions between subsequent decompositions occur. It is the cross-wise dependencies
and influences that gave the domain its name. The induced search trees typically contain many decision
situations that are very sensitive to early commitment like a premature task insertion (cf. [298]) or an inade-
quate conflict resolution. Any strategy that relies too much on one paradigm during plan generation, namely
POCL or HTN-like refinements, will therefore fail to find a solution efficiently: Precautionary disregarding
POCL modifications misses opportunities to deal with causal interactions in the more manageable abstract
plans, and eagerly addressing fixing the causal structure may unnecessarily introduce inconsistencies with
respect to some decomposition refinements. Successful strategies hence perform a balanced mixture of
both.

The structure of the CrissCross domain is very simple in order to be easily readable for the human experi-
menter and also to allow for an adjustable level of “difficulty” in an evaluation setting.

The Language

A sort hierarchy imposes in general a strong structure on the refinement space in terms of separating solu-
tions from inconsistent plans. This is mostly because decomposition refinements are often not only defined
as “alternative” implementations for an abstract task but also as implementations for a specific (sub-) class
of objects. We therefore restrict LCC to a single-sorted language with the respective Z containing only one
symbol: Char, standing for “character”. The language furthermore includes flexible unary relation symbols
from A to F, no rigid relation symbols, and no function symbols. The CrissCross language is consequently
defined by the following tuple:

LCC = 〈ZCC,≤CC,RrCC ,R fCC ,FrCC ,F fCC ,VCC,TpCC ,TcCC ,ECC〉
with

ZCC = {Char} ≤CC = /0
RrCC = /0 R fCC = {AChar,BChar,CharChar,DChar,EChar,FChar}
FrCC = /0 F fCC = /0
VCC = {. . .} ECC = {. . .}

As usual, the elementary operations for this language, ECC, can be directly obtained from the flexible relation
symbols. Furthermore, we will generate variable symbols on demand.

We provide symbols for four primitive task schemata p, q, r, and s, and a set of complex tasks for building
abstractions of operator combinations like pANDr, qANDs, etc.

TpCC = {pCharChar,qCharChar, TcCC = {pANDrCharCharChar,qANDsCharCharChar,

rCharCharChar,sCharCharChar} pANDqCharCharCharChar,

rANDsCharCharCharCharCharChar,

addPRChar,addPQRChar,addAllCharChar}

Tasks and Methods

The CrissCross domain model contains four primitive task schemata. The schemata p and q are merely
adding a state feature depending on the presence of another one and therefore stand for “rule-like” tasks, for
example: “for any character x, if A(x) holds then also does C(x)”. Furthermore, operators r and r represent
the typical “feature switching” schemata that undo (part of) their own precondition.

p(pAChar, pCChar) = 〈A(pA),+C(pC)〉
q(qBChar,qDChar) = 〈B(qB),+D(qD)〉

r(rBChar,rCChar,rEChar) = 〈B(rB)∧C(rC),+E(rE) −B(rB)〉
s(sAChar,sDChar,sFChar) = 〈A(sA)∧D(sD),+F(sF) −A(sA)〉
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Figure 5.16: The temporal (on the left) and causal (on the right) structure of solutions to benchmark prob-
lems in the CrissCross domain.

The key problem with respect to early commitment lies apparently in the cross-wise dependencies between
the operators p and r on the one side and the pair q and s on the other: While p provides a part of r’s pre-
condition, r in turn falsifies q which is needed for s, and vice versa. Based on these definitions, Figure 5.16
depicts three scenarios for the structure of primitive plans that represent isolated standard situations in prac-
tically any planning process: (1) The situation shown at the top is a linear sequence of actions, in which a
necessary causality is passed by the middle action. Any threat resolution that addresses the middle action
implicitly affects the tail action and stretches the passed causal link which in turn becomes more vulnerable
to interactions. (2) The plan in the middle stands for basically the same situation, is however somewhat more
complicated due to the double use of a condition and the fact that the parallel task q cannot be placed after r
because it undoes q’s precondition. (3) The situation at the bottom of Figure 5.16 often occurs unintendedly
when two parallel strands turn out to share resources, etc. It resembles the “Gift of the Magi” paradox for
demonstrating the significance of the upward solution property in hierarchical planning (for instance, see
practical planning section in [223]).

All three cases have in common, that the temporal aspects of the solutions are not mirrored by the causal
occurrences: neither are the causal chains separated as the temporal parallelism suggests, nor is the ex-
tension of causal dependencies limited to subsequent execution layers. Please remember that these are
standard plan generation situation, in the CrissCross domain however, they are emphasized and examined
in isolation. The remaining domain model components are designed such that any solution to appropri-
ately defined problems necessarily consists of the above structures. Furthermore, it is the mutual threat
situations in the causal chains that makes every CrissCross problem having exactly one solution (modulo
isomorphisms).

The operator repertoire is now to be orchestrated in methods’ task networks such that the respective complex
tasks are going to fool a naive strategy on the more abstract plan level. We are consequently building
abstractions of these tasks that obfuscate the described causal conflict by concealing negative effects of the
subsumed operators:

addPR(aprEChar) = 〈>,E(aprE)〉
addPQR(apqrEChar) = 〈>,E(apqrE)〉
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Figure 5.17: How the decomposition hierarchy relates to the temporal (on the left) and causal (on the right)
structure of CrissCross solutions. Sand colour represents the instant introduction of all four op-
erators, red the causal chain-wise decomposition, and blue the operator type-oriented method.

The addPR task is provided with a method that decomposes the task into a sequence of operators p and
r, while addPQR does so for the appropriate triple. Both complex task schemata emphasize r’s effect
specification with respect to the E relation but hide the negation of B. If more than one instance of these
complex tasks occurs in one plan, the co-designation of respective parameters on the abstract level inevitably
produces un-resolvable threats on more concrete levels.

Another dimension of analyzing hybrid planning domain models is that of how the decomposition structure
influences the system’s performance. For the CrissCross domain, we introduce a top-level complex task
addAll that is eventually to be decomposed into the set of all four operator instances. A strategy can thereby
choose between the application of three methods, each of which implies different requirements that the
strategy has to fulfill in order to be able to finalize plan generation successfully. Let the initial task network of
a problem contain several addAll instances. The first defined method instantly introduces all four primitive
task instances, which leaves the strategy in a situation in which it has to deal with (numerous) causal conflicts
on the primitive task level. A second and a third method establish an intermediate abstraction level with
the two complex tasks pANDr and qANDs, respectively the actions pANDq and rANDs. The intermediate
tasks group either the causal chains or the temporal layers. Figure 5.17 shows the three decomposition
alternatives.
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Concluding Remarks

The CrissCross domain is an artificial domain model that is geared to providing a controllable level of dif-
ficulty to hybrid planning strategies. Its challenging features arise from causal interactions on the primitive
level that are, firstly, not visible on the abstract level and that, secondly, are divided up into different complex
tasks. In this way, the CrissCross domain provides an experimental evaluation with benchmark problems that
inflict a penalty on unbalanced planning strategies that pertinaciously follow a pure POCL or HTN schema
and are hence unable to take opportunities. As our experiments will prove in Chap. 6, CrissCross problems
are in fact hard to solve for many strategies. The challenge is apparently not generated by the size of the do-
main in terms of number of object types, attributes, or available task schemata. It is moreover the structural
characteristics of the domain that are responsible for the problems’ difficulty.

5.3 Discussion

5.3.1 Related Planning Architectures

The advantages of a strong modularization for code generation and maintenance are common sense in soft-
ware development. With planning and scheduling technology being embedded in an increasing number
of mission-critical applications, research focuses on longer exclusively on algorithmic issues but more fre-
quently on architectural features that are relevant for this kind of software. Traditionally, multiagent tech-
niques have been proven to provide an appropriate architectural basis for “AI applications”. We understand
that recent technical advances moved from the agent to the “service” paradigm. Various service related
metaphors came into fashion ranging from “Grid Computing” and “Web Services” to “Service Oriented
Architectures”. Since service discovery is not involved in our configurations, these types of architecture are
subsumed by our notion of multiagency.

An established planning system of this kind is certainly the O-PLAN architecture [261], which features some
characteristics that are similar to our system design. Its blackboard (plan state) is modified by combined
detector-modificator agents (knowledge sources). They announce their highest ranked flaws on a common
agenda upon which the strategy (controller) works. Assistant agents (support modules) are used interactively
by the knowledge sources and answer questions about current plan features. The strategy selects the highest
prioritized flaw and triggers the associated knowledge source, which in turn performs its highest prioritized
modification. Key differences are here (1) the agent granularity is not variable, that means, there is exactly
one knowledge source for each flaw/modification class and (2) the strategy options are formulated in terms
of the supported flaws. Thus, it lacks the sort of flexibility that is the main characteristic of our approach.
We can furthermore simulate this kind of controller by selecting modification steps according to modificator
names for which a one-to-one mapping to the flaw types should be provided. O-PLAN has been recently
extended by a workflow-oriented infrastructure, called the I-X system integration architecture [256]. A plug-
in mechanism serves as an interface to various application-tailored tools. However, the planner itself is still
a monolithic system structure.

The multiagent Planning Architecture MPA [286] relies upon a very generic agent-based approach. It exe-
cutes an agent society in which designated coordinators decompose the planning problem into sub-problems.
These sub-problems are solved by subordinated groups of agents, which may again decompose the problem
into smaller units. The individual agents return their solutions to their associated manager agent, which syn-
thesizes the overall solution of its sub-agents. Communication of queries and results is based on the highly
abstract KQML formalism. To our knowledge, no (standardized) middleware functionality has been incor-
porated. This architecture is considerably more general than our presented system, which gives additional
overhead to the agent design for a specific planning system incarnation. Another problem is certainly to find
a sensible decomposition technique for a planning problem and a proper methodology of synthesizing and
combining the partial solutions, including the necessary capabilities for supporting meaningful communi-
cation of both. Besides that, the main difference to the proposed approach is that all solutions are prepared
on the lowest agent level and then have to be synthesized on higher levels. Note that a comparable system
behavior can be reached if we allowed for sequences of modification steps to be proposed and executed.
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MPA’s use of views corresponds to our use of XML as communication base, which allows for selective
parsing, and the presence of Service Agents.

Some approaches try to present planning functionality as services to a larger application environment: The
SIADEX architecture [70] uses XML-RPCs9 for building a distributed planning environment that is acces-
sible via standardized protocols – the architecture thereby decouples a (monolithic) planning server, knowl-
edge base management tools, and an execution monitoring. In order to address connectivity issues, some
planning systems offer their functionality as web service. Examples are the CGI-based10 O-PLAN inter-
face [257] and the approach in [267], where a planner uses SOAP for communication and the Web Services
Description Language for presentation of the service. Although this view helps in enhancing the accessibility
of planning software, the system (development) itself is not directly supported.

Focusing again on architectural issues, appearingly similar frameworks mostly deal with the connection of
a deliberative high level planning component with reactive or rule-based execution monitoring and control
modules [19, 33]. This is especially the case for the integration of plan generation and plan execution. We
sometimes find several special-purpose planning systems deployed concurrently, for instance, the “planning
experts” in the New Millennium Remote Agent architecture [194]. They contribute to different aspects,
respectively sub-problems of the overall planning problem. To our knowledge, the planning or delibera-
tion components in all these approaches are monolithic “standard” systems with no specific development,
configuration, or distribution support.

There also exist application frameworks or class-library toolboxes for building planning applications. Rep-
resentatives for this concept are ASPEN (Automated Planning Scheduling and Planning Environment) [102]
and work in the context of the Planform project [217]. They provide planning specific infrastructural data
structures, classes of supportive inference mechanisms for common planning sub-problems, and algorithmic
templates for rapidly building planning applications “out-of-the-box”. These frameworks concentrate on de-
livering easy to use or configure pieces of a planning software independent from the architecture, while our
view is more centered on providing an architecture in which arbitrary parallel planning system designs can
be realized.

By supporting the designing process of planning software from the point of view of software engineering,
[293] tries to meet several challenges in search-based applications. The most important is certainly that
of having a reusable search engine. As we described above and in previous chapters, our planning agents
can be easily re-used and tailored in our framework. An important point is the flexible composition of
search techniques (this topic is addressed in detail in Sec. 4.1). A last challenging feature is that of the
“obscurity of module boundary”. In the presented system, the decomposition into agents is done along the
flaw detection process and plan modification functionality, which seems rather intuitive and adequate to
us.

5.3.2 Lessons Learned

The Software Framework

An important question is that of our justification to deal with an agent oriented system at all, namely: Did we
fall into an “agent pitfall” [289], believing that agent technology is a “silver bullet”? We are confident that
neither our agent design is too generic for our purpose (cf. pitfall 3.3) nor that we do see agents everywhere
(7.1). On the contrary, we use them more in the way of a naturally modularized software system in which a
least commitment planner can easily be decomposed. The previous sections also give evidence that we are
aware of related technology and existing architectures and standards (5.1, 6.1, and 8.2), since we build on
established formats and architectural features (for instance, the messaging mechanism is compatible to the
JAVA Message Service).

9XML-RPC is a specification and a set of implementations that allow software running on disparate operating systems, running in
different environments to make procedure calls over the Internet. It uses HTTP as the transport and XML as the encoding language.
See http://www.xmlrpc.com

10Common Gateway Interface: Information systems often use HTTP gateways for accessing for their data. The CGI is a standard for
integrating such gateway scripts and programs. See http://www.w3.org/CGI/
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Concerning performance issues of the agent framework, it has to be noted that in our first experiments the
system needs tens of microseconds for handling the communication and coordination overhead per life-
cycle for a society of twenty agents on one physical machine. This overhead can certainly be neglected. The
current framework does not yet exploit concurrency on several computers (aka as pitfall 5.2), but this rather
technical matter is part of our future work.

Despite the numerous advantages of our knowledge-based middleware, we encountered some problems
regarding the inclusion of semantic web components. The semantic web is a relatively young and very
active field of research. During our developments, this implied that DAML has been superseded by OWL11

as the de-facto standard representation language for semantic web content. Although OWL shares many
features with DAML and the relevant subset persisted into OWL, the practical implications of this situation
were quite problematic. It became increasingly difficult to maintain a set of tools and libraries that agreed
on the same language: OWL was not finally defined yet and in addition divided into layers of increasing
expressivity. When DAML support finally started to disappear, it caused an extreme amount of work to
re-build the project.

Another problem is the integration of planning domain knowledge in the description logic formalism of
DAML/OWL. To our knowledge, no satisfactory solution has been proposed in the literature yet. The
main discrepancy lies of course in the dynamics of planning models that cannot be reflected in stan-
dard description logics. The current work-around of using DAML/OWL ontologies as a dictionary for the
planning domain vocabulary is feasible, constitutes however no additional value for the efforts of mainte-
nance.

Domain Model Specifications

As it has been stated in the introductory section, a planning and scheduling system goes hand in hand with its
domain models and problems. Insights gained with the respect to one aspect have an immediate impact on
understanding the other. What started out as an effort to quickly produce a number of benchmark domains
for an empirical evaluation turned into a lesson about what a formally based modelling method like ours can
achieve in terms of model consistency. The contribution of our formal framework is a sound and therefore
reliable basis that helps in writing consistent domain models as well as it assists in finding the errors in
flawed ones. The implications of being tied to such a clear model semantics during specification must never
be underestimated, and the surprises in our translation effort of the UM Translog domain give evidence to
that.

This experience also convinces us to believe that the relevance of a domain model suite for the planning
community must not be reduced to the question of how well it is suited to measure planning systems’
performance but also take into account the knowledge engineering issues it raises. To our surprise, this topic
has been largely ignored and not yet been pursued with the impetus we believe it requires, though the lately
installed International Competition in Knowledge Engineering for Planning is certainly an important step
towards addressing it.

Another lesson learned is the discovery of numerous “anomalies” and “clumsy parts” of the models. But
although it is a trivial fact that anyone who specifies domain models gains experience in recognizing flawed
formalizations and writing “better” models, we are not aware of any research about the issue of quality
of procedural knowledge in the area of planning. In terms of our framework, this includes the question
of how strong the defined refinements separate the search space and how fast they narrow down possible
implementations to a set of solutions. In this view, knowledge quality is not only a matter of aesthetics but
has direct implications on the re-usability of model components on the one side and on the performance of
search strategies on the other.

11Web Ontology Language, see http://www.w3.org/TR/owl-ref/
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5.3.3 Perspective

Future versions of our software framework will not only keep the agents but also the planning state and agent
messages in the system ontology and ABox in order to extend the verification capabilities of the system,
including multiple ABoxes to enable multi-session planning. This will make the PANDA system even more
robust by reasoning in real-time over the dependencies between system states, possible actions and sent
messages that trigger state transitions. To achieve this goal, knowledge about communication (message
performatives, sender, receivers, etc.) and interaction (FIPA-protocols and the planning process model) will
be incorporated into the description logics representation of the system.

Extracting the hard-coded planning process model and describing it in a declarative manner makes the
process model interpretable, that means it can be executed on a generic engine that uses the description as
a process template. Since changes to the planning process do not involve a change of code anymore, this
allows for an easy tailoring of the planning system to applications. The process model itself an then be
verified by transforming it into a petri net representation [197].

As we have pointed out in the presentation of the formal framework, the granularity of flaw detection and
modification generating functions allows for defining highly specialized entities. This is obviously sup-
ported by a knowledge-based architecture: modifications and their generators are more specific than others
and may therefore be (automatically) preferred in proposing a flaw resolving refinement. Such ontolo-
gies may even be domain specific such that, for example, a route-planning subsystem can be deployed
on-demand – relating domain model features with flaws or modifications is an easy task for the presented
architecture.

Regarding our application domains, apart from the obvious need for more well-elaborated formalizations, all
presented domain models are of course to be extended to temporal and resource reasoning. For the Satellite
domain, for instance, we can adopt the respective aspects from the IPC-4 benchmark suite [138]. The
UM Translog enhancements can be inspired by the appropriate IPC definition [290] and the corresponding
demonstration scenarios that have been translated for the SHOP2 system.

5.4 Summary and Conclusion

We have presented in this chapter two facets of fielding the PANDA system, namely the software architecture
aspects and the modelling characteristics of the framework.

The software-related presentation focuses on our multiagent architecture in which we realized the imple-
mentation of our formal framework. The exploitation of the previously introduced semantics for system
components and configurations enables us to use representation and inference techniques of description
logics for dealing with knowledge about the PANDA system itself. This extends the capabilities of the
architecture significantly in both a functional and a non-functional manner. High level configuration ver-
ification can be performed and the system becomes more flexible and configurable as previously implic-
itly encoded knowledge is made explicit. With the use of application server technology and standardized
communication protocols, we have laid the foundation for fielding our system in real-world application
scenarios.

Our brief excursus on specifying planning domain models provided us with some insight into the knowledge
engineering issues that arise in hybrid planning. We presented the relevant aspects of our model repertoire
and gave background information on the rationale behind their design. The set includes a POCL model
that has been added procedural information, an HTN benchmark that has been extended to hybrid planning,
and an artificial experimentation domain. We detailed their particularities, explained the applied modelling
techniques, and shared our experience by discussing the encountered modelling problems. The increased
expressivity and flexibility with respect to plain POCL and HTN models apparently comes with a burden to
construct the formalization very carefully and sometimes very verbosely. On the other hand, the declarative-
ness and clear semantics of the framework’s formalism allow for a structured and tool-supported knowledge
engineering process for consistent planning domain models.
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We will use the presented domain models in the successive Chap. 6 as benchmarks for evaluating some of
the planning strategies that we have developed in Chap. 4.
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6 An Empirical Evaluation of Planning
Strategies

THE central question after more theoretically oriented chapters is usually how the approach works out
in practice. As a response to that question we decided to conduct a series of systematic experi-
ments on the performance of planning strategies, more precisely on their efficiency, stability, and

reliability. The study’s primary objective is to analyze these characteristics of a number of instances from
our strategy component portfolio as it has been presented in Sec. 4.1. Our goal is to achieve a more gen-
eral understanding of the search mechanisms and component interdependencies, as well as obtaining deeper
insights into the application domains that we deploy (Sec. 5.2). As a secondary objective, the experimenta-
tion simultaneously evaluates the practicability of our approach itself, as we gain empirical evidence for the
following claims:

1. The presented approach is an effective framework for setting up planning systems with appropriate
strategic components,

2. our architecture defines a useful experimental frame of yet unmet flexibility, and

3. we have developed a set of very efficient planning strategies with interesting characteristics.

The first two claims are addressed by the various system configuration instances that participate in the
evaluation, which are conceptually individual planning systems. This flexibility of aggregating planning
functionality can be used to systematically alter some of the components – in our experiments these are the
strategic selection functions – and to evaluate the alternative combinations. The evidence for the third claim
are the results that we obtain from the experiments: On the one hand, we will realize direct comparisons to
already proven and tested classical strategies, on the other hand, the analyses will provide a more general
context for positioning our findings.

The chapter is structured as follows: Section 6.1 describes in detail the aims of the conducted experiments.
We begin with defining precisely what we mean by “performance measures” and formulate accordingly our
study objective and research questions that guide experimentation and analysis. Sec. 6.2 then gives informa-
tion about the concrete experimental frame, that means, the participating strategies and the evaluation envi-
ronment. In particular, it describes all test problems and their essential properties.

The major part of the chapter is devoted to the presentation of the individual results in sections 6.3 to 6.5,
where we evaluate the strategies’ performance, analyze our findings, and consider inferences on the charac-
teristics of the involved domains and problems. The chapter continues with a comprehensive discussion in
which we lift our results from the domain-specific level to a more global perspective (Sec. 6.6.1). We also
share our experiences with the technical aspects of the experiments, followed by a short survey of evaluation
efforts that have been reported in the literature.

In the perspective section (6.6.4) we show how the described experimentation can and should be contin-
ued. We sketch the next steps as well as the issues that are implied as upcoming research topics. Sec. 6.7
summarizes the results and concludes the chapter.

6.1 Study Objective and Research Questions

The primary objective of the experimental evaluation is to assess the performance characteristics of a set of
planning strategies. More precisely, we want to examine the properties called efficiency, stability, and reli-
ability of selected combinations of strategy components from our portfolio. We define these characteristics
as follows:
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efficiency: The ratio of obtained solution quality to the required efforts.

stability: A measure for deviations in solution quality over several planning episodes. It covers deviations
over multiple runs on the same problem as well as inter-problem variations of quality. The typical
scale is defined inversely as [0,∞) with 0 representing a completely stable strategy and higher values
indicating that the strategy produces increasingly unpredictable solution qualities.

reliability: A measure for the success-rate of a strategy to find a solution (of a desired quality) at all. As for
stability, reliability is often defined inversely as the ratio of tackled problems to successful runs.

There are of course many candidates for a solution quality metric that may be considered in such experi-
ments, ranging from computation real-time to plan-optimality metrics like the number of plan steps, and the
like. We have chosen the size of the search-space that is explored by the strategy, because we want to have
a simple measure as well as a qualitative one that reduces the influence factors on the data interpretation. If
we considered, for example, a real-time dependent metric, side effects of the implementation would come
into play and the results would massively interfere with the computational resources (available hardware,
competing processes, etc.). On the other hand, we intend to define solution quality as a binary result of
the plan generation process – a solution is either found or not found. We therefore do not have to take
into account more complicated interferences between strategies or any other side-effects of optimization
processes.

Since the precise meaning of these terms is essential for interpreting our findings, we have to define them
in more detail. Please note that the notions of performance characteristics for strategies are inseparably
connected to the configurations into which they are embedded.

Definition 6.1 (Efficiency of System Configurations). The (search-) efficiency of a system configuration C
with respect to a set of problems {π1, . . . ,πn} is defined via the average number (arithmetic mean) of plans
that are analyzed for flaw detection by that configuration in all terminating runs of the refinement planning
algorithm (Algorithm 2.2 on page 70) on that problems. •

According to this definition, a strategy is more efficient the smaller its efficiency value is. It is also left
open whether the domains underlying the problem set are identical or not; in our experiments, we consider
intra-domain characteristics if not explicitly stated otherwise. Please note that it is unspecified in the above
definition whether or not a solution to the given problem actually exists.

Definition 6.2 (Stability of System Configurations). The (search-) stability of a system configuration C with
respect to a set of problems {π1, . . . ,πn} is defined in terms of the statistical dispersion (sample variance) of
the number of plans that are analyzed for flaw detection by that configuration in all terminating runs of the
refinement planning algorithm on that problems. •

Given the previous definition, a configuration is stable if its stability value is very low (ideally 0). The
computation of stability values thereby relies on the efficiency results.

Definition 6.3 (Reliability of System Configurations). The (search-) reliability of a system configuration
C with respect to a set of problems {π1, . . . ,πn} is defined according to the ratio of problems on which
the refinement planning algorithm does not terminate with the given configuration to the overall number of
problems n (failure ratio). It has to be considered that termination may depend on external factors like total
run-time or an upper bound for the size of the search space. •

Reliability is thereby given as 0% for solving all problems in a given set, while 100% represents a com-
plete loss of all runs. This means in particular, that the system did not terminate even with a fail re-
sult.

We are now ready to map the notions of the specific performance characteristics from the previous configuration-
based definitions onto the involved strategy tuples. Since we are interested in analyzing the strategies’ search
space organization (and not in some solution quality), we restrict our evaluation criteria on those strategy
tuples that deploy the identical solution selection function1. We may assume that it is a function “first” with

1As it has been stated before, this restriction is not an essential one. Adding the solution selection function merely produces an
additional dimension in the experimental space.
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f solSel
first (P1 . . .Pn) = true for any sequence of plans P1 . . .Pn, that means, it always accepts the first solution

that is found (see Def. 2.39 on page 68).

Definition 6.4 (Performance Characteristics of Planning Strategies). A combination of a modification se-
lection function f modSel

a and a plan selection function f planSel
b is more problem-specific (search) efficient on

a given problem π than a combination f modSel
a′ and f planSel

b′ with respect to two given system configurations

C1 = 〈Det,Mod,Inf,( f modSel
a , f planSel

b , f solSel)〉 and
C2 = 〈Det,Mod,Inf,( f modSel

a′ , f planSel
b′ , f solSel)〉,

if configuration C1 is more (search) efficient on the problem set {π} than C2.

The pair of strategy functions a and b can be called more domain-specific (search) efficient than a′ and b′ if
for a given set of problems {π1, . . . ,πn} over a domain model D the selection functions f modSel

a and f planSel
b

are more problem-specific efficient than f modSel
a′ and f planSel

b′ . If a strategy combination is more domain-
specific efficient than another over a given set of problems from a given set of domains, it becomes a more
configuration-specific (search) efficient pair of strategy functions, and if is finally a universally (search)
efficient combination, if it is more configuration-specific efficient in a given set of system configurations.
The sets of problems, domains, and configurations to consider are also called the scope of the experiments.

Analogously, a combination of modification and plan selection functions is regarded more stable and reliable
than another combination on the problem, domain, and configuration level. •

The introduced performance characteristics define a three-dimensional space of strategy quality for which
we now have to decide what it means for a strategy to be “better” than another. We will analyze the strategy
performance from different points of view: The first kind of evaluation is primarily interested in strategies
that are producing a result, and among their top performers, we identify the most efficient ones. A slightly
different value system may prefer consistently efficient strategies.

Definition 6.5 (Performance Aggregation). An efficiency-centered performance evaluation of a set of plan-
ning strategies is a dominance analysis according to (1) efficiency, (2) stability, and (3) reliability.

A reliability-centered performance evaluation is defined over (1) reliability, (2) efficiency, and (3) stability.

The success criterion for a strategy is in both evaluation types to be undominated in the according schema.
•

The definition implies for the efficiency-centered schema, that a strategy is considered successful

1. if it is a member or the set of all strategies that are undominated with respect to efficiency (we may
call this set A),

2. if it is a member of the set of strategies that are undominated by a member of A with respect to stability
(this set may be called B), and

3. if it is a member of the set of strategies that are undominated by a member of B with respect to
reliability.

Success in the reliability-centered evaluation schema is interpreted analogously.

Please note the subtlety of defining performance not in terms of being better/faster than any competitor
(cf. discussion section below) but in terms of none of the competitors being systematically better/faster.
While the former puts an emphasis on finding the best – already existing – in the field, the latter adopts our
research perspective of identifying any subject of which we may assume that it is possible to be developed
into one of the best in the field. Such a conservative definition takes into account that as long as there is
no generally better designed strategy, the mechanism has to be considered as a worthwhile candidate for
improvement (under the optimistic assumption that improvement is possible in general). Furthermore, our
view of performance ultimately coincides with the competition-like view, namely when only one candidate
remains, which implies that it dominates all remaining candidates.
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It has to be stressed that the performance characteristics are defined in terms of a certain scope, that means, in
terms of actual experimental evidence only. We will have to address the issue of how some of our results can
be generalized to a wider class of problems, domains, and finally system configurations, but the empirical
approach is not able to produce some kind of general proof. For example, a strategy combination that is
found to be more domain-specific efficient than some other combination does not necessarily dominate that
strategy in the broader Artificial Intelligence sense unless we can prove that one strategy is more problem-
specific efficient on any problem in that domain.

While it would be most interesting to be able to create universally efficient, stable, and reliable strategies
within the widest possible scope, their existence is, however, very unlikely and the ambition to build them is
therefore of limited significance. For example, we do not expect any strategy combination to be universally
efficient on all system configurations that we presented in this thesis, because that would imply to find a
perfect search controller for any kind of planning paradigm and domain structure. Building universally
stable strategies is possible in a fixed “first-solution” selection setting but obviously impossible in an open
environment in which other plan quality metrics become relevant. This is because we want to build non-
trivial stable heuristics,2 which would be forced to produce a (non-optimal) result of constant quality in an
any-time fashion.

Our experimentation is targeted at identifying those components from our portfolio, which constitute domain-
specific efficient, stable, and reliable strategies for hybrid planning configurations. We will focus on the role
of causality with respect to task expansion and therefore disable task insertion (cf. Sec. 3.3.1), which helps
us to relate our findings to the (few) results that are available in the literature. Our domain models of
Sec. 5.2 will thereby serve as reference applications for efficiency- and reliability-centered performance
evaluations.

Concerning the participating strategy-component candidates, an exhaustive, pairwise experimental evalu-
ation of all strategy combinations is obviously not feasible. With the hybrid planning flaw and modifica-
tion classes, Chapter 4 provides 40 modification selection functions plus another 40 obtained by apply-
ing the “inversion” strategy. There are 70 plan selection functions defined, 20 of which are applicable
to “clustering”, and, again, all of those can be inverted. That means, there is a total candidate set of
(40 + 40)× (70 + 20 + 70 + 20) = 14.400 possible strategy combinations that are based on unary com-
ponents alone, and for binary modification and plan selection compositions, we would have to evaluate
(80× 79)× (180× 179) = 203.630.400 strategies (not to think of selection triples, which would result in
about 2,8 ·1012 combinations). Although these numbers contain a considerable amount of (sometimes triv-
ially) useless combinations, the evaluation efforts are too high for an naive approach (see also future work
section 6.6.4). We therefore make a start with a subjective selection of strategy combinations for being
evaluated and try to find answers to a set of “leading questions” that will give us some insights into the inter-
strategy mechanisms, synergy effects, and incompatibilities that may arise – and hopefully in the future
some guidance through the vast space of strategy candidates.

Definition 6.6 (Leading Questions for the Experimental Evaluation). The empirical data is interpreted ac-
cording to the following set of research questions, which are formulated as an open issue on the domain
level as well as the global perspective:

1. Which strategies dominate others? Is there a dominance pattern, for example a particular plan selec-
tion component? How does the individual performance change over the application domains?

2. Is there a confirmation, respectively difference between the theoretical expectations and empirical
results with respect to antagonistic and synergistic strategy components? This includes in particular
the widely discussed plan selection strategies that prefer most, respectively least constrained solutions
(see the “ConstrPlans” plan selection function and its inversion, p. 159).

3. Regarding the role of strategy components:

• Do prefix-sharing strategies produce similar results, and if not, can this be explained by subse-
quent components?

• What is the exact performance relationship between strategies and their specializations? Ex-
amples are direct uniform and indirect uniform HotSpot components and the CL+OCA and
PSA+OCA plan selections.

2A strategy is trivially universally stable if it prevents the algorithm from terminating.
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• How do strategies with switched components perform, for example, if the primary plan selection
is the secondary of the other and vice versa?

Are there completely different strategy combinations with identical results?

4. Related to the complete set of strategies tested: How do the four classical strategies

• S+OC/CL+OC (A∗ in terms of plan steps introduced and open preconditions to be solved,
p. 162),
• UMCP (conflict resolution on the primitive plan level, p. 174),
• SHOP (expansion in execution order, p. 176), and
• EMS (expand-then-make-sound, p. 175)

perform? Regarding hybrid planning system configurations, it becomes in particular relevant whether
or not an early conflict resolution pays off, that is to say, do SHOP and EMS dominate the UMCP
strategy?

In this context, it may also be interesting to ask which strategies are dominated by strategies deploying
a depth-first plan selection? How do those strategies perform that share their modification selection
with the “depth-first” ones?

5. Last, but not least, according to the empirical results, which problems are harder than others in each
domain? Is the result plausible (expectable, if not trivial)? What can be deduced from this knowledge
concerning the domain models?

•

Having defined the goals of the empirical strategy evaluation, we are now ready to specify the experimental
frame.

6.2 Experimental Setup and Design

The following sections describe the design of the performance experiments: the strategy combinations that
are evaluated, the application domains and problem instances that are used as a referential frame for the
performance analysis, and the concrete experiment procedure.

6.2.1 Strategy Combinations

Our starting point for recruiting evaluation candidates lies in a small series of experiments that have been
conducted in previous work on hybrid planning strategies, also in the context of hybrid system configura-
tions that do not insert new tasks [231,234]. We extend the respective component collection such that it now
includes most of the flexible HotSpot and HotZone strategies; the complete list of participating modifica-
tion and plan selection functions is given in Table 6.1. From these components, we build systematically 93
strategy combinations (the table indicates which components were used in a primary and secondary posi-
tion). The systematic approach for combination building allows us to deduce properties of shared or altered
sub-components, for example, strategies with the same modification selection functions but different plan
selections and vice versa.

This candidate set includes the three classical hybrid planning strategies UMCP, SHOP, and EMS, together
with enhancements for two of them: we provided UMCP and SHOP with potentially synergetic plan selection
functions. The evaluation set also covers a number of hybrid CL+OC and S+OC derivates, which have been
used earlier in the context of non-hierarchical partial-order planning (cf. Def. (4.15) and (4.16)).
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Table 6.1: All plan and modification selection functions that are participating as strategy components in the
empirical evaluation.
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6.2.2 Domains and Problems

The evaluation environment for our hybrid system configurations are the three application domain models
that have been presented and discussed in Sec. 5.2: Satellite, UM Translog, and CrissCross. Since they
represent three different styles of hybrid domain model building and include two former benchmarks3, we
believe that they are well-suited for our purpose.

The following sections introduce the planning problems that we defined for the performance experiments,
grouped by the respective domain models. For each problem, we briefly discuss its structure and solution
properties and indicate the best known solution as well as the best solution found by the system. The “best
known solution” refers to the results obtained by a manual or in some cases semi-automatic planning tool and
the minimum plan step number as well as the visited search space are upper bounds for the exact minima.4

Its strategy cuts more or less all unselected plans and is therefore an incomplete process (cf. discussion
in Sec. 2.8.5). The visited plan space is however considerably smaller since no alternatives are evaluated
up to the point where the system “completes” the human plan generation suggestion and therefore roughly
corresponds to the length of the solution plan path in the search space.

Problems in the Satellite Domain The Satellite domain is originated in non-hierarchical partial-order
planning and therefore even in its hybrid formulation not very deeply structured (Sec. 5.2.1). In contrast
to the known IPC problems, the hybrid problems are defined in terms of observation tasks that have to
be performed and not in terms of observation goals to be achieved. The problems we deal with in the
experiments are variations over the number of observation tasks, available satellites, and image properties.
The basic choice in plan development is the decision of whether to perform the observations in a sequence
on one satellite or to distribute the tasks on different satellites. All problems are solvable, that means, every
required image mode is provided by at least one instrument of at least one satellite and every instrument
has defined a calibration target. It has to be noted, that although the problem instances appear very small,
the induced search space is surprisingly large. In fact, the satellite observation planing problems contain the
most difficult of the whole evaluation.

1obs-1sat-1mod: One observation task, one satellite available, and the image is required in one mode.
There is one unique solution in which the satellite is first slewed into a unique calibration direction,
then calibrated, and finally slewed into the target direction in which the image is taken. The PANDA-
System finds a solution with 7 primitive tasks (including initial and goal tasks) within 14 cycles in
manual mode, the best automatic solution is found in 23.

2obs-1sat-1mod: Two observation tasks, one satellite available, both images are required in the same mode.
There exist symmetric solutions in which a 1-1-1 solution is found for one target, followed by a slew-
ing task into the other target direction. The second image can be taken without additional calibration.
We can find a solution with 9 primitive tasks (including initial and goal tasks) after 21 cycles in manual
mode; automated configurations needed at least 163.

2obs-2sat-1mod: 2 observation tasks are to be performed with 2 available satellites, images are required
in one mode. There are two classes of solutions: Either a 2-1-1 solution on either satellite or two
symmetric 1-1-1 solutions for each satellite. We can find manually one of the symmetric solutions with
12 primitive tasks (including initial and goal tasks) within 24 cycles and a solution with 9 primitive
tasks in which two images are taken in series by the same satellite within 19 cycles. The best solution
found by an automated configuration took 109 cycles.

2obs-2sat-2mod: 2 observation tasks, 2 satellites available, images are required in 2 modes. First type of
solution is analogous to the 2-1-1 problem: one satellite has to sequence its observations, including
necessary calibration procedures. Another option is a solution that consists of two 1-1-1 sub-solutions
for each satellite, that means, images are taken in parallel. There is no further symmetry, because only
one of the satellite carries the instruments that comply with the mode requirements. We can manually
find a solution that consists of 13 primitive tasks after 28 cycles. This solution is obtained when one

3For some discussion about the domain models deployed in the International Planning Competition see page 191.
4The minimal sizes of the solution plans’ task expression sets are known, however, the portion of the search space that is at least

required to be traversed for encountering a solution has not been determined precisely. We believe that the numbers we obtained
from an experienced user in a completely manual plan generation are a very close upper bound, though.
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satellite takes two images in series. A parallel solution with 12 primitive tasks can be found after 25
cycles. The best automated search takes 135 cycles.

3obs-1sat-1mod: 3 observation tasks, one satellite available, images are required in one mode. Analo-
gously to the 2-1-1 and 1-1-1 problems, there exist symmetric solutions with respect to the actual
observation ordering. We can find a solution with 11 primitive tasks after 33 cycles in the manual
search mode, the best known automated plan generation took 1.516.5

3obs-2sat-3mod: 3 observation tasks, 2 satellites available, images are required in 3 modes. The instru-
ments on one satellite are capable of all relevant modes, the other satellite only covers two modes
(similar to 2-2-2). We can distinguish three classes of solutions: (1) one satellite takes all the im-
ages, (2) one satellite takes two images, the second satellite performs one observation, and (3) the
second satellite performs two observations. In addition, symmetries exist with respect to the obser-
vation ordering. A completely sequential solution on the primary satellite contains 19 primitive tasks
(including initial and goal tasks) and can be found manually within 46 cycles. A solution in which
both satellites are involved has 18 primitive tasks and takes 42 cycles. No automated configuration
was able to solve the problem within the given time and search space horizon.

3obs-3sat-1mod: 3 observation tasks, 3 satellites available, images are required in one mode. The solutions
can be characterized analogously to the 2-2-1 problem: Either every satellite performs exactly one
observation task or one is taking over responsibility for additional observations. Symmetries occur
concerning the choice of satellites. We can find a solution with 17 primitive tasks within 36 cycles in
manual mode. For this solution, the three images are taken in parallel (one image per satellite). More
“sequential solutions” include only 14 and 11 primitive tasks and are found manually after 31 cycles
and 26, respectively. The best known automated strategy’s performance is 336.

3obs-3sat-3mod: 3 observation tasks, 3 satellites available, images are required in 3 modes. This problem
is basically an extension of the 3-2-3 scenario, in which satellites are equipped with an increasing
number of instruments: one satellite is only capable of one mode, the second can deliver images
in two modes, and the third finally covers all three required modes. The classes of solutions are
analogous to the previous two-satellite problem and are consequently symmetric with respect to the
ordering of observations in parallel threads. Manual efforts for solving this problem are 44 (19 tasks,
images taken in series), 43 (18 tasks, two images in parallel), and 39 (17 tasks, all images in parallel)
cycles. There is no result from the automated strategy candidates.

Problems in the UM Translog Domain The UM Translog domain originally is an HTN domain that
has been transcribed into a non-hierarchical IPC benchmark (Sec. 5.2.2). It has deeply nested method
structures (see also discussion in the respective section) and therefore serves as a test for the prediction of
causal interactions down the decomposition hierarchy. Our problem set consists of a representative cross-
section of the transportation means, ranging from air freight to specific chemical transports. The focus is
thereby on identifying the suitable method(s) for the decomposition of transportation tasks, that means, on
the choice of compatible transportation means and procedures, and not on the embedding path-finding sub-
problem that the urban infrastructure poses. All problem instances are solvable by all of the appropriate
task implementations; there are no further constraints like limited transportation means, unavailability of
transportation routes, and the like. The automated strategies perform very well on these benchmarks, so
since the construction of a solution under the experiment-constraints (time and search space) seems to be
a feasible task for our evaluation candidates, we interpret it as an performance indicator of much finer
granularity than, for example, the satellite problems.

Since none of the following problems has multiple solution classes like the previous satellite problems, we
will use a short notation for the minimal plan length (lmin, including initial and goal task), the number of
plans that are visited by using a human-guided manual strategy (cman), and the minimal number of cycles it
takes for our set of automated evaluation candidates (cauto).

5It is the first problem in this listing in which the automated process performs significantly worse than a human search (factor is
46). Significance has to be seen here in relation to an exponential growth of the search tree, which makes an additional search
“overhead” of factor 10 not too surprising.
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Airplane: A plan for transporting a regular package as air freight eventually consists of primitive tasks for
loading the package onto the plane via a conveyor ramp, moving the plane to the destination airport,
and unloading the plane. lmin : 15 cman : 34 cauto : 87

RegularTruck: In this basic package delivery task a truck is used to transport a regular, stackable good from
one city to another. lmin : 11 cman : 24 cauto : 60

RegularTruck-3Locations: This is a variation of the regular truck problem above in which the decomposi-
tion methods are used to perform an additional route planning over an intermediate city.

lmin : 12 cman : 28 cauto : 82

2-RegularTruck: In another variation of the regular truck problem we ask the planner to deliver two regular
packages. With 242 cycles for the “fastest” automated plan generation, this problem exhibits the
highest difference between human and automated strategy performance in this domain.

lmin : 20 cman : 48 cauto : 242

TankerTruck: The tanker truck problem models a transport of liquid hazardous chemicals. Before the actual
transportation can begin, a permission for the transportation route has to be obtained, the cities that
are passed on the way have to confirm that they allow the truck to enter their districts with such goods,
and specific warning signs have to be affixed to the truck and trailer. In addition, the tank filling and
emptying procedures have to be carried out under security measures. lmin : 19 cman : 48 cauto : 65

HopperTruck: Substances like sand have to be transported in containers for bulk material. Such a trans-
porter is a hopper, which is loaded and unloaded via a chute that has to be connected to the vehicle
during the filling operations. lmin : 11 cman : 24 cauto : 60

FlatbedTruck: This is an example for transporting lumber; this involves a stationary equipment “crane” for
loading a flatbed truck. lmin : 9 cman : 32 cauto : 67

AutoTruck: Delivering cars on a special truck does only require a specific trailer but no additional security
measures. lmin : 11 cman : 30 cauto : 88

ArmoredRegularTruck: In this scenario, a valuable (regular) art object is transported, which requires an
armored transportation vehicle as well as guards that keep the loading procedure under surveillance.

lmin : 16 cman : 26 cauto : 63

MailTraincar: Mail is an instance of regular packages, in this case delivered by train. Choosing train trans-
port implies providing a suitable car and a locomotive to which the car can be connected.

lmin : 13 cman : 32 cauto : 78

RefrigeratedTraincar: The problem deals with a train transport of food, which is a regular good that has to
be kept cool. lmin : 13 cman : 32 cauto : 78

AutoTraincar: This is a variant of the auto truck problem in which a train transport is used. The locomotive
has to be moved to the customer site first. lmin : 14 cman : 43 cauto : 152

AutoTraincar-bis: This problem is an simplification of the auto train car scenario: the locomotive is already
at the customer site’s train station. lmin : 13 cman : 38 cauto : 100

Problems in the CrissCross Domain The CrissCross domain has been designed as a test environment
for the HotSpot planning strategies (Sec. 5.2.3). It’s decomposition hierarchy is relatively flat, however it
introduces many non-trivial causal inter-dependencies across the expansions that may provoke unresolvable
inconsistencies. The benchmark problems consist of multiple arrangements of the basic causality patterns
as shown in Fig. 5.16 and 5.17 (p. 210 and 211). We thereby distinguish repetitive arrangement of the
same pattern and mixtures of different patterns, with which we try to analyze scalability in terms of “size”
(adding another block to the table) versus scalability in terms of “structural complexity”. Again, all problem
instances are solvable since there are sufficient character constants available to satisfy a task implementa-
tion. Since there are no substantial variations in the solution structure, the following descriptions use the
previously introduced short notation for the solution characteristics.

P0: This problem is defined as an initial task network that corresponds to the situation shown in the first
row of Fig. 5.16 (p. 210). It is a prototypical arrangement of tasks in which a condition “passes” an
intermediate step. This problem can be solved without backtracking. lmin : 5 cman : 7 cauto : 15

225



6 Empirical Evaluation

P0-2: The problem combines two P0 instances, which may be placed in parallel. The causal chains
within the P0 solutions may interfere, hence some search.

lmin : 8 cman : 15 cauto : 36
P0-3: Like in the previous problem, this one combines three P0 instances, which may pose threats to

the causal sub-structures in the P0 chains.
lmin : 11 cman : 24 cauto : 95

P1: This problem corresponds to the situation shown in the middle row of Fig. 5.16. P1 extends P0 by
an additional consumer of the state feature that is finally required by the task at the end of the P0
sub-chain. At the end of a P0 plan, that state feature is however negated and the planner has to ensure
that the additional step is positioned before that threat. In this simplest possible scenario, there may
be some backtracking over unsuccessful threat resolution tactics. lmin : 6 cman : 10 cauto : 22

P1-2: The problem combines two P1 instances, which may be placed in parallel. This arrangement
combines threat resolution combinatorics in the style of the respective P0 instances and the P1
problem. lmin : 10 cman : 21 cauto : 57

P1-3: Like in the previous problem, this one combines three P1 instances which obfuscates causal
interference detection by the number of combinations of hypothetical threats.

lmin : 14 cman : 33 cauto : 139

P2: This problem corresponds to the situation shown in the last row of Fig. 5.16. It is basically an integration
of two mirrored P1 instances in which the order of expansion refinements determines the structure of
the (visible) causal interactions. In the single P2 problem, this already produces search paths that
cannot be trivially prioritized according to features like “integrity” or “stage of development” of the
causal structure, causing branches in the search tree that are usually pursued in parallel.

lmin : 7 cman : 13 cauto : 40

P2-2: The problem combines two P2 instances, which may be placed in parallel. This is the first
CrissCross problem that may induce a serious explosion of the search space.

lmin : 12 cman : 28 cauto : 147
P2-3: Like in the previous problem, this one combines three P2 instances. Regarding the minimal

search-space exploration, this has been the most difficult problem (more than two times harder
than the second hardest) in the CrissCross domain for the automated strategies.

lmin : 17 cman : 45 cauto : 358

P0-P1: This problem combines a P0 and a P1 problem instance, both sub-solutions can be sequenced or
placed in parallel. lmin : 9 cman : 18 cauto : 44

P0-P2: This problem combines a P0 and a P2 problem instance, both sub-solutions can be sequenced or
placed in parallel. lmin : 10 cman : 22 cauto : 94

P1-P2: This problem combines a P1 and a P2 problem instance, both sub-solutions can be sequenced or
placed in parallel. lmin : 11 cman : 25 cauto : 105

P0-P1-P2: This problem combines a P0, a P1, and a P2 problem instance, the sub-solutions can be se-
quenced or placed in parallel. lmin : 14 cman : 35 cauto : 152

6.2.3 Experimental Frame

The above introduced problem definitions served as the experimental environment of our evaluation. We
implemented an experiment software tool for automatically configuring and running the planning system
as well as for retrieving and storing the produced data. With that tool, we set up a hybrid planning sys-
tem configuration for every combination of the strategies candidates and problem instances and run 5 plan
generation trials, resulting in 93× (8 + 13 + 13)×5 = 15.810 data points where we determined the size of
the explored search space in terms of the number of plans that have been analyzed for flaw computation.
For each set of five runs on the same configuration and problem, we calculated the minimum value, the
arithmetic mean, the sample variance, and the failure ratio, that means, the ratio of runs in that set that did
not terminate on a solution. Every run of the planning system was limited to a real-time consumption of
150 minutes and an exploration of at most 5.000 plans; a run consequently failed if it exceeded these limits
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and was counted as a non-terminating run and excluded from the mean and variance computation. We pre-
ferred the exclusion of failure runs over assigning a fictitious “worst-case” in order to capture the notions of
efficiency and reliability separately.

All participating strategies were deployed in an aggregating “master strategy” that implements a cut op-
eration with respect to what we call unreachable modifications (see p. 172). Furthermore, a decision
procedure is prefixed to every to call of the modification selection functions: in the fashion of the least
commitment selection (Def. (4.22)) the current plan is analyzed for singular modification proposals, that
means, for flaws that are answered by exactly one modification. In this case, the proposed modification
is selected and executed without entering the “regular” modification selection cycle and the resulting plan
substitutes its predecessor in the fringe. In this way, necessary modifications are forced and some redun-
dant plan space fragments are cut. But it has to be emphasized that despite these two heuristic opera-
tions, all evaluated configuration instances are complete planning systems in the sense that is discussed in
Sec. 2.8.5.

6.3 Evaluation Results in the Satellite Domain

Efficiency-Centered Performance Evaluation

The Satellite domain and the proposed problem instances are very accessible; we will hence report our
findings in this particular domain along with a detailed explanation of our applied analysis techniques and
refer to these explanation in later sections. We begin with the efficiency-centered performance evaluation in
the Satellite domain, the results of which are depicted in Figure 6.1.

The graph shows the aggregated dominance relationships between the strategies regarding their domain-
specific search efficiency, stability, and reliability. The nodes are only a fraction of the participating candi-
dates, they are those strategy tuples that are undominated in the domain-specific search-efficiency analysis
of the domain. The node at the top of the figure, for example, stands for the pair of modification selection
function f modSel

EMS . f modSel
LCF and plan selection function f planSel

PSA+OCA. The three numbers denote the number of
strategies that are dominated by the strategy of this node in terms of efficiency (left), stability (middle), and
reliability (right).

According to the efficiency-centered performance evaluation schema, green edges are added to the graph
for every stability-dominance relationship between two strategies of the candidate set. After that, for any
strategy that performs more domain-reliable than another, a corresponding blue edge is inserted if this does
not induce a cycle on the edges, in other words, if the reliability result does not contradict stability (which
in fact only occurs once in this candidate set and domain). In order to improve readability, the depicted
graph is a reduced representation such that all transitive edges are removed, and all undominated nodes are
coloured red.

The most prominent result of the first efficiency-centered performance evaluation schema is therefore that
the “best” strategies in the Satellite domain are the following:

• f modSel
EMS . f modSel

LCF with f planSel
PSA+OCA

• f modSel
EMS . f modSel

LCF with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
SHOP with f planSel

First (also known as the “classical” SHOP strategy6)

While we expected the candidate set to include strategy combinations like f modSel
LCF . f modSel

IndAdaptHS with f planSel
FewerModBHS .

f planSel
Fewer−M , which is a strategy that dominates more than 50% of its competitors in every performance char-

acteristic, we were surprised by the presence of tuples like f modSel
LCF . f modSel

IndUniHS and f planSel
DirUniHS . f planSel

Fewer−M ,

6 f modSel
SHOP is an abbreviation for f modSel≺ . f modSel

Pre f−MExpandTask
−1 , see page 176.
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ems df

50 2 34

ems_lcf lhz_fmf

11 5 27

ems_lcf du_fmf

19 17 20

ems_lcf fmh_fmf

39 38 55

hz_lcf sdr_fmf

24 16 42

lcf_ems lhz_fmf

13 6 20

ems_lcf psaoca

38 2 88

ems_lcf sdr_fmf

27 48 83

hz_lcf lhz_fmf

14 14 27

lcf_ia fmh_fmf

50 54 72

hz_lcf lcp_fhz_fmf

22 2 54

lcf_hz sdr_fmf

28 17 54

hz_lcf fmh_fmf

23 6 7

hz_lcf_iu lcp_fhz

14 3 43

lcf_iu fmh_fmf

23 13 7

lcf_iu du_fmf

5 2 3

lcf_da fmh_fmf

50 13 58

lcf_ia iu_fmf

10 4 16

shop df

35 1 21

Figure 6.1: The efficiency-centered performance evaluation in the Satellite domain. Nodes are the most
efficient strategies, edges represent stability (green) and reliability (blue) dominance. Node
annotation shows number of strategy combinations dominated by the node in terms of efficiency,
stability, and reliability (red = undominated strategy).
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Figure 6.2: The relative search efficiency of the undominated strategies in the Satellite domain. 100% on
the vertical axis corresponds to a “perfect” strategy that solves the problem immediately, 0%
represents the worst efficiency value in the experiments.

because they hardly dominate any competitor. It is also remarkable that the classical strategies EMS and
SHOP with their depth-first plan selection function are in the candidate set.

In order to get an idea of how “good” the “best” are, we put the efficiency-centered performance result
into perspective of the range of efficiency values that we have measured for their competitors. Fig. 6.2
displays the efficiency values normalized with respect to the worst measured value. For example, on the
1-1-1 problem, the worst known efficiency is 87 cycles, which defines the 100% reference value for the
performance window of that problem. The ( f modSel

EMS . f modSel
LCF , f planSel

FewerModBHS . f planSel
Fewer−M ) strategy (“ems_lcf-

fmh_fmf”) has an efficiency of 32 in that problem instance, which leads to a relative performance gain
of 64%. What is intended to be seen in the figure is the relative distance between the individual winning
strategies and the two best cases: the best efficiency on that problem (“Min. Mean”) and the best known
single run, represented by the orange “Best Found” columns; the latter also displays the range of the obtained
efficiency results in relation to the worst case. It has to be noted that the two best cases do not coincide, they
are merely very close on the large scales. While on some problems the average values of the best strategies
are very close to the best known solutions, there is definitely room for improvement on others (not to speak
of the unsolved instances).

That leaves us with the question of a dominance pattern: The performance results in Fig. 6.1 provide us
with a set of good candidates for working in the Satellite domain, they do however not give a broader
view on what kind of strategy one should try in that domain. To that end, we set up a matrix of strategy
components that covers most of the combinations (80, plus 5 classical variations) and calculate the average
rank of every combination within the efficiency values for each problem instance (with respect to the whole
strategy universe of 93 combinations). Tab. 6.2 shows that matrix with the respective selection functions in
alphabetical order. Since the bare numbers are certainly hard to overview, we provide a colouring schema
that roughly displays the statistical rank of the strategy’s not rounded average rank within the original data
(cf. Tab. B.1).

• The blue cells are values that are within the first quartile of the rank values,

• beige coloured cells lie between the first quartile and the median,

• white indicates a value between median and third quartile, and

• the red color denotes those values that are above the third quartile, respectively the fact that the
problem instance could not be solved by the strategy.
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6 Empirical Evaluation

The rationale for looking after the rank of ranks lies in normalizing the performance characteristic over the
statistical population and the differently difficult problem instances.7 To put it simply: We can character-
ize how difficult is it to win with the given challenges and field of competitors. The ranks for completely

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 66 61 61 63 64 61 59 60 65 64

du_fmf 33 35 44 50 51 47 43 45 50 50

fhz_fmf 38 53 45 53 55 56 38 56 62 56

fmh_fmf 27 42 31 56 55 46 24 43 58 43

iu_fmf 37 42 45 54 53 41 37 56 46 55

lhz_fmf 37 36 47 49 36 47 46 46 42 39

psaoca 27 46 34 55 53 48 39 43 59 52

sdr_fmf 29 41 38 50 46 36 35 37 49 50

EMS 25

UMCP 41 UMCP+ 45

SHOP 23 SHOP+ 49

ModSelection

Table 6.2: A strategy-component matrix of the average ranks of efficiency values in the Satellite domain
(blue = within first quartile, beige = within median, red = beyond third quartile).

unsolved problems are set to the arithmetic mean of the first and last potential rank that could be assigned
to that strategy, that means, for n competing strategies of which m did not solve a given problem, all fail-
ing strategies are assigned a rank of (n−m) + m

2 . Since we cannot interpolate the efficiency beyond the
termination criterion, we decided to give an “average bad rank” to the failing strategies. The relatively
high number of unsolved problem instances is also a reason for the bad rank values; this also applies to
the well-performing combinations. After all, an empirical evaluation can only be done relatively to a given
universe.

There is however an important observation that can be made on the data in Tab. 6.2. It appears that efficiency
is positively associated with the plan selection functions f planSel

F/TE . f planSel
Fewer−M (row “sdr_fmf”) and f planSel

LeastHZone .

f planSel
Fewer−M and the modification selection functions f modSel

EMS . f modSel
LCF and f modSel

LCF . f modSel
IndAdaptHS. On the other

hand, a negative influence on efficiency seems to emerge from plan selection f planSel
CL+OCA and modification

selection f modSel
LCF . f modSel

ModBasedHS. Both tendencies are exceptionally evident at the respective crossing points
in the matrix, so we may hypothesize that efficiency is an additive property of both selection function types,
although it does not explain all phenomena (for instance, the fact of some depth-first combinations being
undominated). We will come back on this issue later.

Reliability-Centered Performance Evaluation

We are now switching to the reliability-centered performance evaluation in the Satellite domain, and we
can confirm our previous findings: Figure 6.3 shows the results that are obtained if reliability becomes the
primary objective for a strategy. The candidate set is considerably smaller, since there are only four strategy
tuples that are undominated according to the reliability analysis. We conjecture that this is also due to the
small number of possible outcomes for the failure ratio calculation (five discrete values, cf. Tab. B.3), and
that the set will therefore become richer populated in an experimental setup with substantially more runs per
configuration and problem. The graph does not contain any edges, because no additional dominances are
obtained based on efficiency and stability considerations. That means, all candidates qualify for the “best”
strategy:

• f modSel
EMS . f modSel

LCF with f planSel
PSA+OCA

• f modSel
EMS . f modSel

LCF with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

7In fact, this presentation also normalizes the influence of the examined domain.
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ems_lcf fmh_fmf

39 38 55

ems_lcf psaoca

38 2 88

lcf_da fmh_fmf

50 13 58

shop df

35 1 21

Figure 6.3: The reliability-centered performance evaluation in the Satellite domain. Nodes are the most reli-
able strategies; there exists no additional dominance result, hence all candidates are undominated
according to this evaluation schema. Node annotation shows number of strategy combinations
dominated by the node in terms of efficiency, stability, and reliability.

• f modSel
SHOP with f planSel

First

It has to be noted that the equivalence of the winner sets of the two performance evaluations is a pure coinci-
dence, because the candidate sets from the first analysis steps (the undominated efficient versus undominated
reliable strategies) are completely independently recruited and can be expected – with a certain probability
– to be even disjunct.

What does it mean if a strategy is called reliable in the Satellite domain? The tabular overview in Tab. 6.3
puts the winning strategies into the perspective of the whole evaluation candidates.

Strategy Average Failure Rate
Best value 43%

f modSel
EMS . f modSel

LCF with f planSel
PSA+OCA 43%

f modSel
EMS . f modSel

LCF with f planSel
FewerModBHS . f planSel

Fewer−M 50%
f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M 50%
1. Quartile 64%

f modSel
SHOP with f planSel

First 70%
Average value 72%
Median 75%
3. Quartile 80%
Worst value 88%

Table 6.3: Positioning of the most reliable strategies within the field of competitors in the Satellite domain.

We can see that the average reliability of our winning strategies is certainly not convincing on an abso-
lute scale, one of them is even below the first quartile and only slightly above the average overall relia-
bility. We believe that this is one more argument for an in-depth analysis of strategy behaviour, because
a simplifying “adding things up” kind of data collection would have discarded some of our best strate-
gies, by over-emphasizing single results and ignoring that actually no competitor is systematically supe-
rior.

Analysis of Strategy Components

We are closing the first performance analysis with a summarized comparison of the dominance results for
strategy families that are built on the same primary plan selection function. It provides us with a brief
overview of the experimental data as well as with a notion about the selectivity of the evaluation method

231



6 Empirical Evaluation

Primary plan selection Total Undom. e/s/r % EC RC
f planSel
ConstrPlans−1 2 2 1 – 50 – –

f planSel
First 3 2 1 1 44 1 1

f planSel
FewerModBHS 10 5 3 2 33 2 2

f planSel
DirUniHS 10 2 3 – 17 – –

f planSel
F/TE 10 3 1 – 13 – –

f planSel
LeastHZone 10 3 1 – 13 – –

f planSel
IndUniHS 10 1 3 – 13 – –

f planSel
PSA+OCA 11 1 2 1 12 1 1

f planSel
CL+OCA 10 – – – 0 – –

f planSel
FewerHZones 14 – – – 0 – –

f planSel
Addr−FAbstrTask

−1 1 – – – 0 – –

f planSel
ConstrPlans 2 – – – 0 – –

Total: 93 19 15 4 14 4 4

Table 6.4: Primary plan selections in the Satellite domain: Number of undominated system configuration
instances according to (e)fficiency, (s)tability, (r)eliability, efficiency-centered performance (EC),
and reliability-centered performance (RC). % stands for the ratio of possibly to factually undom-
inated.

in that domain (on that given set of problem instances). The following table (Tab. 6.4) shows the set of
primary plan selections that participated in the evaluation, the total number of strategy combinations that
have been built from that plan selection, and the number of combinations that were undominated with respect
to efficiency (cf. Fig. 6.1), stability, and reliability (cf. Fig. 6.3). These figures are related to the total number
of possible occurrences of instances being undominated, for example, two instances of the ConstrPlans−1

family yielded three “undominated” findings of six possible, therefore resulting in 50%. Note that this
ratio, if computed over all candidates, defines an average occurrence rate that we regard as a threshold for
a strategy being “exceptionally undominated”; the table represents this threshold by a horizontal separator.
The last two columns give the number of “best” strategies according to efficiency- and reliability-centered
performance, respectively.

Although our findings have yet to be considered rather preliminary, these numbers give us the confidence
that performance evaluations that are based on dominance considerations are strong enough to concentrate
further experimentation on a “reasonably” shaped sub-set of candidates. “Reasonably” has thereby to be
read in two ways: it reduces the experimentation efforts to dealing with a reasonable amount of subjects and
at the same time, the candidate selection has been done in a comprehensible and plausible way (cf. remarks
on Def. 6.5).

In order to gain further insight into the influence of strategy components on their performance character-
istics, we build a component-based matrix of average reliability ranks, analogously to the efficiency ranks
above. As we can see in Tab. 6.5, there also seems to be a correlation of selection functions and (un-)
reliability, however the role of some individuals changed. The positive association with the plan selection
function f planSel

F/TE . f planSel
Fewer−M (row “sdr_fmf”) and the modification selection function f modSel

EMS . f modSel
LCF can

be confirmed; the same holds for the negative performance of all combinations that involve a f planSel
CL+OCA plan

and f modSel
LCF . f modSel

ModBasedHS modification selection. New positive candidates are the f modSel
HZone . f modSel

LCF family
(four of them proved to be very efficient, cf. Fig. 6.1) and combinations with f planSel

PSA+OCA. The cumulative
effect of the components in the respective combinations seems to be evident, however not as definite as for
the efficiency characteristic.

Let us finally have a look at a third component matrix, this time showing the stability values of the respective
configurations’ results. This characteristic that has not yet been examined by our previous analyses; we can
see that Tab. 6.6 roughly corresponds to the above efficiency matrix, although there are not too distinctive
row or column patterns visible. We would have expected to see stronger links also with the reliability results,
since an instable strategy is intuitively more likely to fail and vice versa.
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PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 51 41 41 41 48 48 41 41 48 41

du_fmf 39 37 47 46 45 47 45 46 47 47

fhz_fmf 26 35 32 37 36 41 26 41 41 34

fmh_fmf 26 41 26 35 41 41 21 41 41 31

iu_fmf 39 38 47 46 46 38 40 51 41 47

lhz_fmf 34 29 45 46 39 46 43 45 40 40

psaoca 18 37 28 41 32 37 32 32 41 34

sdr_fmf 24 34 32 34 34 30 32 27 36 32

EMS 31

UMCP 35 UMCP+ 32

SHOP 32 SHOP+ 41

ModSelection

Table 6.5: A strategy-component matrix of the ranks of reliability values in the Satellite domain (blue =
within first quartile, beige = within median, red = beyond third quartile).

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 52 45 51 49 51 51 50 49 49 53

du_fmf 38 40 49 55 41 50 50 53 49 48

fhz_fmf 36 46 44 47 47 54 39 51 55 53

fmh_fmf 32 49 36 41 45 47 24 46 54 29

iu_fmf 37 40 50 54 54 51 46 60 44 52

lhz_fmf 43 34 51 51 45 47 52 53 44 44

psaoca 36 45 44 54 42 46 47 47 58 51

sdr_fmf 30 43 45 48 48 39 44 40 47 46

EMS 50

UMCP 55 UMCP+ 49

SHOP 41 SHOP+ 53

ModSelection

Table 6.6: A strategy-component matrix for the ranks of stability values in the Satellite domain (blue =
within first quartile, beige = within median, red = beyond third quartile).

We are now ready to examine some specific strategy combinations at a more detailed level. The strategy
sub-set that is shown in Fig. 6.4 consists of prefix sharing combinations as well as combination rotations,
that means, strategies in which the primary and secondary plan selection function are swapped. The set also
includes two antagonistic plan selection preferences, the one that prefers the more constrained plans (mcp =
f planSel
ConstrPlans) and the less constrained plans (lcp = f planSel

ConstrPlans−1 ), respectively.

Our first observation is that there is hardly any stability dominance within the set of strategies. Since all
combinations are equipped with the same primary and secondary modification selection functions, we take
this and the above findings of a “missing” row pattern as a first evidence to a hypothesis that stability is
determined by modification selection only. But it is probably also a side-effect of high failure ratios that
produce trivial variances of 0 respectively undefined.

The performance characteristics of the antagonistic plan selection functions are positively in favour of the
least constrained principle: most lcp combinations dominate most mcp combinations with respect to ef-
ficiency and reliability, without any converse result. The Satellite problem seems to be more adequately
tackled by committing cautiously and not by trying to force an early failure. This argument is supported by
the fact that one combination with the avoidance of too many HotZones (hz_lcf_iu-lcp_fhz) is among
the final candidates in the efficiency-centered performance evaluation as well (Fig. 6.1). However, this find-
ing is not very intuitive, because it has to be taken into account that prioritizing less developed plans induces
a search space development that is similar to a breadth-first schema. On the other hand, the system avoids to
deal with those plans that (prematurely) introduce too many causal dependencies.

In order to understand this behaviour of the strategy, consider Fig. 6.5; it shows the causal and temporal
structure of a solution for the easiest Satellite problem. We can see that the temporal aspects of a Satellite
plan are trivial: as we have shown in the problem descriptions, there is exactly one solution with seven
tasks (including the initial and goal tasks) for the 1-1-1 problem and a corresponding number of parallel
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Figure 6.4: A detailed analysis of performance characteristics of related strategy combinations in the Satel-
lite domain. The edges represent a dominance relationship with respect to efficiency (orange),
stability (green), and reliability (blue).
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Figure 6.5: The causal structure (top) of a solution to the 1-1-1 problem in the Satellite domain and the in-
duced temporal structure (bottom). The coloured task nodes and causal links indicate structures
that are added to the plan in the context of one expansion each.
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and interleaving chains in the more complex problems. However, even in the simplest problem, which
is shown in the figure, it becomes obvious that the causal structure introduces a level of combinatorial
complexity that can easily escalate. Most of the causal interactions are an easy task to organize for our
hybrid planning configurations, because the causal support that is to be synthesized piecewise – depicted
as black edges in the upper part of Fig. 6.5 – refers to rigid state features, that means the facts have to
be deducible exclusively from the initial state description. The coloured causal links are introduced in the
decomposition networks and are therefore only to be secured. The difficulty emerges from chosing the
right decomposition method, as this determines whether or not the satellite platform is properly calibrated
and orientated, and from adequately bridging the causal gap between the decompositions (in the figure,
this means the black causal links between the two turning operations and the property of the instrument
being calibrated). We may conjecture that this constellation produces a certain ratio of “inter-method” and
“intra-method” causality which in turn makes an early causality establishment less useful or informative
(cf. [144]).

Since the visited plan space is very small for the simplest Satellite problem, we are able to take a closer
look at it and demonstrate the search behaviour that is described above. Fig. 6.6 displays the development
of a solution for the 1-1-1 problem by a strategy that prefers less constrained plans to work on. The ellipses
represent the examined partial plans, starting from the initial task network at the top, and are numbered in
the order of their creation. The red ellipse marks a solution, blue stands for “open nodes” in the fringe that
are yet to be developed, and light beige coloured plans are discarded ones (for they carry un-solvable flaws).
Edges denote the respective plan refinements and are labeled with the applied plan modification class. The
basic facts for this search space are the following: It consists of 62 visited nodes, has a branching factor
between 1 and 5 (average approx. 1,4), and has a maximal depth of 17 (this is also the solution depth). We
may also note that the ratio of open nodes is 5% and that of discarded plans 24%. It can easily be seen from
the node generation order that the search pattern corresponds to a breadth-first schema – the figure highlights
this by blue lines that show a characteristic sequence of fringes. It has to be noted that the emergence of such
a regular search pattern is to some extent induced by regularities that are intrinsic to the Satellite domain
model. If we take a closer look at the solution path, the measure of being constrained, that means, the ratio of
the size of a plan’s constraint sets to its number of steps, constantly increases from 1,3 to 7,3 by an amount
of ca. 0,2 – except for the relatively elaborated very first task expansion which is not subject to strategic
choice in this problem. This effect is more or less observable on all paths in the search space and therefore
synchronizes the development of all refinement alternatives to proceed in strata.

When we look at the structure of the refinement space that is explored by the strategy with the antago-
nistic plan selection we immediately recognize a depth-first oriented search schema (Fig. 6.7). During the
depicted plan generation episode – one of the better runs of that particular strategy – the system visits 51
nodes, has to face a branching factor between 1 and 5 (average approx. 1,5), and descends to a maximum
depth of 18 nodes with the solution being available finally at a depth of 17. The ratio of open nodes is 4%
and that of discarded plans 27%; the difference with respect to the previous example is obviously an effect
of the depth-orientation which is known to have a lower space complexity8 and to follow every path until
it reaches a dead-end. The depth-first orientation of the strategy is caused by the above regularity argu-
ment, too, because the only task adding refinement (cf. experiment objective section) is that of apparently
“constraint-balanced” expansions. This induces a monotonicity property for the values of the constraint
ratio of successive refinements and the search has to become a depth-first one – irrespective of the deployed
modification selection.

We also note that both strategies benefit from a late addressing of complex task flaws by the shared modifica-
tion selection function. Remember that a HotZone-based modification selection focuses on the relationship
of HotSpots in the plan structure, as it is defined by equation (4.30) (p. 169), and this avoids in our scenarios
dealing with abstract tasks, which are typically flawed by open preconditions and open parameter bindings,
too. If expansions occurred closer to the initial plan, this would be particularly disadvantageous to the un-
constrained plan preference, because branching is highest in the decompositions, which means that many
(futile) selection decisions have to be made repeatedly. On the 1-1-1 problem, for example, a simple expan-
sion preference causes f modSel

Pre f−MExpandTask
. f modSel

lc f with f planSel
ConstrPlans−1 . f planSel

FewerHZones to perform dramatically
worse: it takes 116 plans to analyse, with a branching of 1 to 10 (1,6 on average). The open node ratio rises

8The fringe of a depth-first exploration will grow only factorial in size, in the order of depth× branching factor, while breadth-first
schemata have to store depthbranching factor many nodes.
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FewerHZones with a hybrid planning system configuration on the 1-1-1
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to 12% and 26% of the plans are discarded, which both is an effect of pursuing symmetric plan generation
paths that lead to inconsistent plans.

All strategies in our detailed analysis are modulations of the two presented instances and basically show the
same plan generation behaviour. In order to put this result into the perspective of our previous results, we
consider for a moment an example for a strategy that is in a certain sense balanced between these two search
schemata. It is a plan selection that primarily focuses on the modification HotSpots in the available plan
modification set of a plan, the strategy that is built from f modSel

LCF . f modSel
IndAdaptHS and f planSel

FewerModBHS . f planSel
Fewer−M

(cf. performance analysis in Fig. 6.1). Fig. 6.8 shows the explored topology; it takes the strategy 42 plans
to analyze with a branching factor between 1 and 5 (average is 1,4). With an open node ratio of 1% and a
discarding rate of 19%, the depicted sequence of fringes clearly indicates what we might call an opportunistic
search schema. While it apparently does not pay off on the small problem instances, this schema turned out
to be one of the most efficient ones in the Satellite domain.

Let us now continue with the performance characteristics analysis in Fig. 6.4: As expected, switching the
primary and secondary plan selection functions affects the combination’s performance significantly. The two
strategies with the f planSel

ConstrPlans−1 . f planSel
FewerHZones prefix dominate the f planSel

FewerHZones . f planSel
ConstrPlans−1 combinations

in terms of efficiency, the analogous constellation for the “prefer constrained plans” strategies however turns
out to be less determined. The f planSel

ConstrPlans . f planSel
FewerHZones combinations are not all dominated, but all are on

most instances less problem efficient.

Adding an established strategy as a third plan selection function (preferring plans with fewer refinement op-
tions as a compensation for a third modification selection) increases the efficiency for one the ConstrPlans−1

combinations but not their stability like we expected in the experiment design phase. This is of course only
a very rudimentary result that needs substantially more experimentation with respect to which kind of strate-
gies make beneficial decisions in those combinations, how many decisions actually can be made in the third
position, and the like. But we believe this finding gives evidence to the conjecture that plan selection func-
tion f planSel

Fewer−M is at least compatible9 with the preference of less constrained plans and, which is of more
general relevance, that stability is to a greater extent linked with the modification selection than with the
plan selection functions.

The question of strategy stabilization by selection function sequencing is closely related to that of the per-
formance relationship of strategies that are closely related from the methodological point of view. The
relation of the plan selection functions f planSel

CL+OCA and f planSel
PSA+OCA has been discussed in Sec. 4.1.2 and the ex-

perimental results support our claim that a proper assessment of added plan steps is an essential factor in
the A∗ heuristic. In the end, a PSA+OCA derivate is among the best evaluated strategies, while the whole
CL+OCA strategy family suffers from a very low stability and reliability, and produces the worst efficiency
values.

Deploying a plan selection according to HotZone criteria is apparently a successful concept. For example,
we see that five such strategy combinations are very efficient in the Satellite domain (see Fig. 6.1). But
as we have observed before, the preference of fewer HotZone sections in a plan seems to be less effective
than concentrating on the minimum HotZone values (cf. Tab. 6.4). However, a direct comparison gains a
slightly different perspective on this issue: In fact, there is no single efficiency dominance result between two
strategy combinations with primary f planSel

FewerHZones respectively f planSel
LeastHZone. Furthermore, there are practically

as many FewerHZones strategy combinations more stable than LeastHZone representatives (4 to 3), and the
reliability result completely contradicts the global trend, because FewerHZones dominates LeastHZone in
no less than 14 cases (and no counter example). Since we cannot provide yet a coherent interpretation of
these findings that would explain this evident discrepancy, we suggest further experimentation in order to
get a better picture of the two mechanisms.

The strategies SHOP and UMCP will be focused on later, at this point we are interested in the relationship
between the two classical implementations and their derivates with plan alternative plan selections f planSel

PSA+OCA
(shop+ in tables 6.2, 6.5, and 6.6) and f planSel

Addr−FAbstrTask
−1 (umcp+, idem). The EMS component is deployed

9We do not have yet a formal notion of compatibility. For the time being, we may consider two strategy components compatible if
one of them benefits from the other as a subsequent strategy in terms of any performance characteristic. Compatibility is obviously
an irreflexive, transitive relation that has to be redefined for any planning domain (and at least reconsidered for any major change
of problem classes).
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Figure 6.9: Quantitative dominance comparison between direct, indirect, adaptive, and uniform modifica-
tion selection in the Satellite domain. Edge labels denote number of dominant instances in
/ contrary to edge direction; edge width corresponds to dominance ratio (orange=efficiency,
green=stability, and blue=reliability).

solely only in its classical form (see below), richer combinations have already been treated above.
The rationale behind shop+ is to combine the in all performance categories apparently very effective mod-
ification selection with a very well performing plan selection. The result is a bit disappointing, although
not too surprising: the new shop+ combination performs significantly worse and is even one of the least
performing PSA+OCA combinations. The SHOP method is based on a specific temporal treatment of flaws
in a plan (cf. Def. 4.41) and that refinement order cannot be preserved by the PSA+OCA A∗ heuristic.
umcp+ was intended as an example for repeating the modification selection principle in the plan selection
and it improved the results for the classical variant with respect to reliability and stability at a minor loss of
efficiency.

Our evaluation population contains a number of strategy combination instances that are built from direct
uniform and indirect uniform HotSpot components (cf. strategy definitions (4.23) to (4.26) ff). When we
compare the performance measures of the respective system configurations we find that in 26 cases those
which are based on the direct uniform HotSpot plan selection ( f planSel

DirUniHS) dominate in terms of efficiency
the ones that rely on the indirect uniform HotSpot function; the converse can only be found in 8 cases. Re-
garding stability, basically the same result holds: the direct variant beats the indirect plan selection f planSel

IndUniHS
in 24 comparisons and looses in 7. In terms of reliability, both strategy types perform comparable (28
to 30). This result is not consistent with our hypothesis that the finer granular indirect HotSpot compu-
tation is better informed about the plan development status (the second conjecture, that this also depends
on preceding and subsequent strategy components, cannot be addressed in this experimental setting). We
do not have yet an explanation for this phenomenon and refer to corresponding analyses in other domains
below.

Concerning the combinations that deploy the respective modification selections, our findings mostly confirm
the expectations raised in the strategy sections. Fig. 6.9 shows the detailed numbers of dominance results
in the Satellite domain. It is apparently almost always the case that an indirect HotSpot calculation is an
advantage over a direct one for both adaptive and uniform modification selection functions: For example,
a combination with a (secondary) indirect adaptive modification selection is in 23 cases more reliable, in
12 more efficient, and in 6 more stable than a combination with a direct adaptive component. The only
exception to this clear superiority is the reliability parity and small stability inferiority for indirect uniform
combinations. An unambiguous result is the relative dominance of the adaptive modification selections
over the uniform ones. The biggest gain can be achieved in terms of efficiency, followed by reliability
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Efficiency Stability Reliability
Strategy dom. dom. by dom. dom. by dom. dom. by
CL+OCA∗ 4 52 5 12 6 48
PSA+OCA∗∗ 20 9 1 8 37 19
UMCP 16 1 0 15 31 3
SHOP 35 0 1 0 21 0
EMS 50 0 2 5 34 2

∗ Average dominance values for 10 combinations.
∗∗ Average dominance values for 11 combinations.

Table 6.7: The dominance situation for the classical strategy implementations in the Satellite domain.

and stability. This encourages us to suggest future experimentation on that matter; further investigation
on suitable initial weights and adaptation increments may improve the absolute result substantially (cf.
definitions (4.27) and (4.28), Appendix A).

Since the general behaviour of the uniform plan selection seems to contradict that of the modification selec-
tion functions, let us take a closer look at the component performance tables 6.2, 6.5, and 6.6: An indirect
uniform plan selection definitely suffers from the analogous modification selection, and vice versa, for the
rankings of the f modSel

LCF . f modSel
IndUniHS f planSel

IndUniHS . f planSel
Fewer−M are the worst in the respective row and column.

The situation is similar in the direct uniform cases, although the negative “amplification” is less significant
in view of the column values, but for the direct uniform plan selection most other modification selections
produce better results. Furthermore, mixing direct and indirect uniform selections does not improve the
rankings either.

Other candidates for compatibility phenomena are the modification selection f modSel
HZone and the two deduced

plan selection functions that focus on plans with the “least hottest zone” or the fewer HotZone components:
For both plan selections, the HotZone modification preference is better used as a primary selection func-
tion (the candidate set also contains an inferior combination with a prefixed least commitment function).
According to the results, it is in particular the preference of fewer HotZones that benefits from a HotZone
pre-selection.

Analysis of Classical Strategies

Let us now turn to the classical strategies that participated in the evaluation experiments. As we have seen
before, the plan selections that are based on A∗ schemata perform very well if the addition of plan steps is
computed in terms of plan modifications (PSA+OCA) and not in terms of absolute numbers (CL+OCA). We
have also documented the success of the classic strategies SHOP and EMS; both perform on a high level and
although they are not in the same quartile for all solved problems, they seem to benefit respectively suffer
from the same problem characteristics. The most visible difference is that the SHOP strategy is consider-
ably more stable. One of our evaluation questions was where do these strategies, together with the classical
UMCP strategy, stand in the whole field of competitors? The precise numbers of dominating respectively
dominated strategy combination instances for each performance category are given in Tab. 6.7. While our
performance evaluation concentrated on the property of being undominated, this table shows how many
competing individuals are actually dominated and how many negative results exist. It has to be noted that
although every CL+OCA combination dominates on average only 4 other combinations in terms of effi-
ciency, the dominated strategy is in 90% of all cases a fellow CL+OCA; regarding reliability, this rate is still
at 50%. The much more often dominanting PSA+OCA combinations, on the other hand, have established
themselves in the evaluation population so that nine out of ten dominated strategies are based on a different
plan selection function.

In the context of hybrid planning system configurations, it is particularly interesting whether or not an early
conflict resolution is beneficial in the Satellite domain or not. This question can be answered by a direct
comparison of the strategies SHOP and EMS with UMCP: do the former dominate the latter? Fig. 6.10 shows
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the dominance results for the subset of our classical strategies; the width of the arrows represents the ratio
of actual dominance findings to the total number of combinatorial possibilities. For example, the orange
arrow from strategy SHOP to CL+OCA stands for ten cases in which the former was found more domain
search-efficient than the latter. Since there is one SHOP instance and ten combinations that deploy the
CL+OCA plan selection, we have a full coverage and the arrow is assigned the maximum width. Besides
the confirmed results concerning those combinations that deploy f planSel

CL+OCA and f planSel
PSA+OCA, the figure also

includes the relationships between our focused strategies.

Surprisingly, we cannot come to a clear judgement about the alternatives SHOP, EMS, and UMCP. If we
compare our previous findings in

• Tab. 6.2 to 6.6: SHOP and EMS have superior rankings in all categories;

• Tab. 6.7: SHOP dominates twice as many competitors than UMCP via efficiency but 30% less via
reliability, EMS dominates with its efficiency about three times more combinations than UMCP, while
both perform more or less equivalently with respect to reliability;

• Fig. 6.10: The only dominance results in this context are SHOP and EMS dominating UMCP in terms
of stability respectively efficiency.

In summary, the results indicate that UMCP is definitely not the first choice of strategy in the Satellite domain
but the fact that some of the most efficient subjects in the experimental population do not dominate it leads
to the assumption that probably (simple) derivate combinations of UMCP will perform satisfactory. We
therefore conclude that with the exception of f planSel

CL+OCA all classical strategies are reasonably well performing
candidates for further experimentation in the Satellite domain. This is in particular the case for the versatile
f planSel
PSA+OCA strategy component. Since there is no clear evidence for the systematic superiority of an early

(that means, abstract) threat detection, we recommend a focused exploration of extension strategies in order
to obtain a broader data basis.

Problem Analysis

When we formulated the set of research questions that should be addressed by the experimentation (Def. 6.6),
we also included the question of what information the performance results give about the experimental
setting they are evaluated in. We regard a careful inference of difficulty characteristics from the empir-
ical results as a legitimate extrapolation because of the number and variety of deployed planning strate-
gies.
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Figure 6.11: Difficulty of the problems in the Satellite domain in terms of efficiency.

To this end we applied to the problem instances the same data processing techniques that we used for
the efficiency- and reliability-centered performance evaluations. In correspondence to previous definitions
like 6.4, we understand the Satellite problem instances as subjects that apparently can only be solved by
a number of individuals with a certain efficiency. In this way, a problem a can be seen more efficiency
difficult than a problem b if all strategy individuals are less efficient on a than they are on b; stability and
reliability can be formulated analogously (for better readability, we will use a boldface font for the categories
in the following sections). Although all obtained results are solely valid in the context of the participating
strategies, we may argue that if the strategy repertoire is representative or diverse enough then this empirical
litmus test can categorize a given problem set into a “universal” difficulty schema, because there is obviously
no10 structural particularity in the problem that a strategy could exploit by some sort of “built-in trick” or
bias.

The results of such an evidence based problem analysis in the Satellite domain are shown in the three dia-
grams Fig. 6.11 to 6.13. For example, the efficiency dominance between problem instances 1obs-1sat-1mod
and 2obs-2sat-2mod means that all strategies that participate in the evaluation perform more efficient (on an
absolute scale) within the 1-1-1 problem than on the 2-2-2 problem. We also interpret the fact that 1-1-1 is
undominated in all three characteristics as an evidence for that problem being “the simplest” in the evalua-
tion of that domain. Most of the observable dominance relationships are intuitively plausible and so is also
the emerging of “strata”: most problems in the Satellite domain are more difficult than other problems if they
include more observations, more satellites, and more modes. This would be a trivial result – if it were not
only most strategies that obey that rule. We will inspect some of these oddities.

As we have discussed in the experimental setup section, the number of required modes in which images
have to be taken imposes restrictions on the solution due to the different capabilities of the satellites. These
restrictions become no sooner visible than during the identification of a causal link producer for an open
precondition on the supports predicate. At this point, the plan might already be committed by previous
refinements to an unsuitable satellite object; consequently, the open precondition flaw cannot be answered
in this case and the plan cannot be developed into a solution. This situation of a late inconsistency detection
causes the planner to waste immense search efforts and is thereby obviously more influential on efficiency
than the ambiguity implied by the number of available observation platforms (otherwise, 2-1-1 and 3-1-
1 would dominate 2-2-1 and 3-3-1). The reason for that lies in the fact that it does not matter whether
“redundant”11 satellites are involved in the solution or not; most of the observation implementation options
are consistent with unused satellites and even an unnecessary second calibration step is tolerable because it
can be achieved within one complex task expansion. As a consequence, in the 2-2-1 scenario roughly six
out of seven combinations of a satellite assignment and a primary decomposition method selection do yield

10or at least no obvious. . .
11Note that the evaluation candidates are not deployed in a resource-aware configuration; the described notion of redundancy would

otherwise be considered as a relaxation of the problem.
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Figure 6.12: Difficulty of the problems in the Satellite domain in terms of stability.

a solution, which does not substantially challenge the planning strategies (for a comparison: in the 2-2-2
setting this ratio is only three out of seven). For these cases, a solution that is constructed in a sub-optimal
way is obtained more efficiently than one that produces too many dead ends. If we furthermore assume
minor “noisy” variations in the search space topology of our candidates, we can generalize this result such
that Satellite problems of the form xobs-ysat-zmod are less efficiency difficult than problems x′obs-y′sat-
z′mod with x≤ x′, y≤ y′+ε , and z≤ z′. So far, this matches our findings and is an explanation for 3-3-1 and
2-2-1 being easier than 3-2-3 and 3-1-1, respectively. The available data does however not indicate where
the actual equilibrium between additional satellites ε and the differences of observations and modes may be
located; the currently undecided pairs 2-2-1/2-1-1 and 3-3-1/3-1-1 suggests that ε may be larger than 2. We
propose to conduct experiments with additional problem instances that include more (redundant) satellites
and modes.

Having said that, an anomaly that we are not able to explain yet is lack of evidence for the 3-3-1 problem
being more efficiency difficult than any of the problems dealing with two observations and in particular
not more difficult than the 2-2-1 instance that is included as a sub-problem. It is an open issue, why of all
strategies it is those few capable of solving the harder 3-x-y instances that are having exceptional difficulties
with the 2-x′-y′ ones. Furthermore, it is also not clear, why the 2-1-1 problem has not been solved by
strategies that are able to solve those problems with more satellites and modes. We believe that these issues
may arise from too small sample sizes and therefore we see the necessity for further experimentation at this
point.

We will briefly look into the results for the other two performance characteristics. Fig. 6.12 shows the sta-
bility dominance of problems in the Satellite domain. Unfortunately, the obtained data cannot be reasonably
analyzed because of the large number of unterminated runs that leaves a number of strategies with one single
successful plan generation episode which in turn results in a stability value of 0 (cf. Tab. B.2). We have to
conclude that stability is not generally suitable for analyzing problem characteristics, since its interpretabil-
ity strongly depends on reasonably well performing strategy candidates as well as on large sample sizes. We
will revisit this issue for the other evaluation domains.

For the time being, we note that stability is probably only useful as an additional difficulty measure; for the
Satellite domain, it does neither contradict any previous result nor provide further insights.

Let us finally inspect the reliability dominance as it is projected on the planning problems (Fig. 6.13). It can
be seen that this notion of difficulty corresponds perfectly to the results we obtained in the strategy analysis:
In the Satellite domain reliability correlates with efficiency. This characteristic does not only confirm the
previous findings, it also provides the “missing” dominance result between the 2-2-1 instance and 3-3-1 – the
stratification is now more like expected. Given the above findings, we conclude with proposing a problem-
difficulty measure that is based on reliability-centered performance (which is in this case equivalent to the
reliability analysis). The necessity for this measure lies in the fact that only a primary focus on the failure
ratios allows a proper data interpretation on inhomogeneously performing subjects in the strategy candidate
set and in particular if the proportion of over-strained strategies is high (see the average failure ratio rates in
the reliability compilation in Tab. B.3, the overall average is 72%).
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Figure 6.13: Difficulty of the problems in the Satellite domain in terms of reliability.

6.4 Evaluation Results in the UM Translog Domain

Efficiency-Centered Performance Evaluation

In the efficiency-centered performance evaluation of the UM Translog domain, we have to deal with almost
twice as much candidate subjects as in the Satellite domain. Fig. 6.14 shows the results: the 33 nodes in
the graph are those strategies that are undominated in this domain with respect to efficiency, green edges
represent an additional domination in terms of stability, and blue edges record reliability domination. We
note that we did not experience any contradictory result with respect to successive dominance relations.

As we can see, the efficiency-centered schema leaves four strategies undominated, that is to say, the follow-
ing four strategies are regarded as the best performing ones:

• f modSel
EMS . f modSel

LCF with f planSel
F/TE . f planSel

Fewer−M

• f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

ModBasedHS with f planSel
FewerModBHS . f planSel

Fewer−M

Interestingly, the second strategy was also among the best performing ones in the Satellite experiments.
It is also worth noting that reliability subsumed all but one stability relationship and is in the UM Translog
domain an apparently more influential measure. This is most probably a side effect of a domain-wide smaller
failure ratio; we will come to this point below.

Although the most effective strategies do perform better than before in the sense that the number of domi-
nated competitors is significantly higher on average according to all characteristics, it is remarkable that the
f modSel
EMS . f modSel

LCF / f planSel
F/TE . f planSel

Fewer−M strategy with its only 7 efficiency- and 5 reliability-dominated rivals is
finally one of the best. This evaluation also confirms the standing of the classical strategy combinations with
EMS, UMCP, and SHOP participating at least in the undominated efficient candidate set.

Fig. 6.15 puts the absolute efficiency of our winning candidates into a statistical perspective of the whole set
of participating subjects. As we can see, the winner’s performance level in the UM Translog experiments
is considerably better than before and only three or four problems seem to be relatively difficult. However,
please note that these results are merely relative to the complete experimental series; reducing the competi-
tion on the efficient candidates and rerunning the evaluation will fan out the values on the given scale. But
we can nonetheless record that for the time being our best performing strategies are not only un-beaten by
other candidates but are very absolute-efficient as well.
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Figure 6.14: The efficiency-centered performance evaluation in the UM Translog domain. Nodes are the
most efficient strategies, edges represent stability (green) and reliability (blue) dominance.
Node annotation shows number of strategy combinations dominated by the node in terms of
efficiency, stability, and reliability (red = undominated strategy).
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Figure 6.15: The relative search efficiency of the undominated strategies in the UM Translog domain. 100%
on the vertical axis corresponds to a “perfect” strategy that solves the problem immediately, 0%
represents the worst efficiency value in the experiments.

Let us now turn to the component-wise efficiency analysis that is shown in Tab. 6.8. The UM Translog
domain does not share most of the tendencies that we observed in Satellite. The most obvious opposite
results are the bad efficiency of the strategies that deploy the f planSel

LeastHZone primary plan selection (the row
labeled “lhz_fmf”) or the f modSel

EMS . f modSel
LCF modification selection. On the other hand, the CL+OCA plan

selection criterion is considerably better ranked than before.

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 84 44 47 51 65 51 43 46 47 64

du_fmf 84 68 65 70 78 69 62 64 65 78

fhz_fmf 62 21 22 27 35 27 20 23 19 38

fmh_fmf 82 21 12 14 27 14 11 8 22 30

iu_fmf 84 67 65 69 77 68 61 64 63 78

lhz_fmf 83 63 64 70 78 67 61 63 66 78

psaoca 82 35 30 41 44 34 23 40 27 48

sdr_fmf 40 27 48 75 38 14 27 25 34 22

EMS 43

UMCP 48 UMCP+ 31

SHOP 34 SHOP+ 75

ModSelection

Table 6.8: A strategy-component matrix of the average ranks of efficiency values in the UM Translog domain
(blue = within 1st quartile, beige = within median, red = beyond 3rd quartile).

A positive association with efficiency is slightly less obvious than before, but it seems to be the case for the
(primary) plan selection functions f planSel

FewerHZones (fhz_fmf), f planSel
FewerModBHS (fmh_fmf), and f planSel

F/TE (sdr_fmf),

as well as for the modification selection functions f modSel
LCF . f modSel

IndAdaptHS and f modSel
LCF . f modSel

DirAdaptHS. Nega-
tive efficiency associations can be observed with the before mentioned f modSel

EMS . f modSel
LCF modification and

f planSel
LeastHZone . f planSel

Fewer−M plan selection, but also with the plan selection functions f planSel
DirUniHS . f planSel

Fewer−M and

f planSel
IndUniHS . f planSel

Fewer−M , which are mostly ranked in the last quartile of the data set. It is also worth pointing out
that, ironically, the direct as well as the indirect HotSpot principle does work exceptionally well for modifi-
cation selection but at the same time exceptionally badly for plan selection. This tendency holds conversely
for the Satellite domain but not as clearly as it does here.
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Figure 6.16: The reliability-centered performance evaluation in the UM Translog domain. Nodes are the
most reliable strategies; there exists no additional dominance result, hence all candidates are
undominated according to this evaluation schema. Node annotation shows number of strategy
combinations dominated by the node in terms of efficiency, stability, and reliability.

Facts that particularly deserve our attention are the crossing points of selection functions with extra positive
and negative association in the component matrix. An indeed, the data supports again the “accumulation
hypothesis”, since the positive crossing points are all in the first quartile’s rankings (including the two best
average rankings 8 and 11) and the negative ones in the last quartile, respectively (including two combina-
tions with the worst average ranking of 84).

We believe that the latest analysis substantiate an implicit finding in the previous sections: The presented
portfolio of examination methods is in fact necessary to judge the strategies properly, even more so if “per-
formance” is understood in multiple ways. As we have argued repeatedly, performance in terms of any
characteristic has to be seen in many dimensions if we are looking for developable strategy combinations.
A good example is the above component analysis, which provides a more abstract view on the evalua-
tion candidates but does not point explicitly to the winning strategies according to the efficiency-centered
schema.

Reliability-Centered Performance Evaluation

Regarding the reliability-centered performance evaluation of our strategy set in the UM Translog domain,
we make a similar observation as for Satellite; the candidate set that is derived from a reliability domi-
nance analysis is considerably smaller than that we obtained from efficiency. But also, as Fig. 6.16 shows,
these candidates cannot be ranked further by a subsequent characteristic, and the best performing strategies
according to this schema are therefore the following five:

• f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
LCF . f modSel

ModBasedHS with f planSel
FewerModBHS . f planSel

Fewer−M

• f modSel
EMS . f modSel

LCF with f planSel
F/TE . f planSel

Fewer−M

• f modSel
UMCP with f planSel

Addr−FAbstrTask
−1 (the modified classic UMCP+)

With the exception of the UMCP derivate, all of these are also the best efficiency-centered performing strate-
gies.

When we look at the reliability values of the best performing strategies, the results are much more closely
placed on the statistical scale of the UM Translog domain (Fig. 6.9). This time, the winning strategies solved
all posed problems, and also the other descriptive measures attest the evaluation candidates a reasonably
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reliable behaviour, for example, a quarter of the strategies only failed on less than 10% of the runs. The only
counter examples are those three strategies that actually terminated not on a single plan generation episode
successfully.

Strategy Average Failure Rate
Best value 0%

f modSel
LCF . f modSel

DirAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M 0%
f modSel
LCF . f modSel

IndAdaptHS with f planSel
FewerModBHS . f planSel

Fewer−M 0%
f modSel
LCF . f modSel

ModBasedHS with f planSel
FewerModBHS . f planSel

Fewer−M 0%
f modSel
EMS . f modSel

LCF with f planSel
F/TE . f planSel

Fewer−M 0%

f modSel
UMCP with f planSel

Addr−FAbstrTask
−1 0%

1. Quartile 8%
Average value 23%
Median 17%
3. Quartile 31%
Worst value 100%

Table 6.9: Positioning of the most reliable strategies within the field of competitors in the UM Translog
domain.

Analysis of Strategy Components

As we did above for the Satellite domain, we are now focusing on the dominance results per primary plan
selection, thereby basically merging the rows of the qualitative ranking matrix (Tab. 6.8) into quantified
occurrences of un-dominance. In contrast to those previous findings, we see that UM Translog does leave
a greater percentage of strategies undominated (29%), presumably caused by a more diverse set of prob-
lem characteristics such that it becomes less probable for a single strategy to consistently perform superior
to any other (which in turn produces more dominated strategies, cf. Tab. 6.10). As we can see, the best
performing candidates do come from strategy families above the average threshold of 29%, that is to say,
they are recruited from those strategies that are found undominated in all characteristic category above-
average.

In order to examine the strategy components in more detail, we break up the results into component matri-
ces – like we did above for efficiency – according to reliability and stability (Tab. 6.11 and 6.12). In con-
trast to the Satellite results, the tendencies are more visible and more coherent this time. The well-ranked
plan selections, which were built on HotZone, modification HotSpot, and detection-ratio based primary se-
lection functions are apparently the most reliable and stable ones, too. Also the negative results can be
confirmed, that means, the direct and indirect uniform HotSpot selections and the least “hottest” HotZone
heuristic.

Regarding observability of a trend, it becomes in particular obvious that in solving a UM Translog problem
the proper modification selection becomes a key issue with respect to stability. Consequently, if we also
take into account that in this domain all characteristics more or less correlate, we are inclined to propose
that Tab. 6.12 alone gives us enough evidence to avoid at least modification selection that deploy the EMS
and Pref-MExpandTask functions. However, we have to remember that one of the winning strategies has been
constructed from such a negatively associated modification selection!

Let us now concentrate on that subset of the strategies that includes antagonistic combinations and cross-
combinations, shown in Fig. 6.17. The more discriminating effect of the UM Translog problems becomes
again observable, for instance, in a more balanced occurrence of characteristics dominance relations between
the subjects (cf. Fig. 6.4). Since we also have more reliable strategies as in the previous Satellite domain,
there are more distinct stability values available.
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Primary plan selection Total Undom. e/s/r % EC RC
f planSel
First 3 3 3 – 67 – –

f planSel
FewerModBHS 10 7 8 3 60 3 3

f planSel
F/TE 10 8 9 1 60 1 1

f planSel
FewerHZones 14 11 9 – 48 – –

f planSel
ConstrPlans−1 2 – 2 – 33 – –

f planSel
Addr−FAbstrTask

−1 1 – – 1 33 – 1

f planSel
PSA+OCA 11 4 4 – 24 – –

f planSel
IndUniHS 10 – 3 – 10 – –

f planSel
LeastHZone 10 – 2 – 7 – –

f planSel
CL+OCA 10 – 2 – 7 – –

f planSel
DirUniHS 10 – 1 – 3 – –

f planSel
ConstrPlans 2 – – – 0 – –

Total: 93 33 43 5 29 4 5

Table 6.10: Primary plan selections in the UM Translog domain: Number of undominated system configura-
tion instances according to (e)fficiency, (s)tability, (r)eliability, efficiency-centered performance
(EC), and reliability-centered performance (RC). % stands for the ratio of possibly to factually
undominated.

hz_lcf_iu fhz_lcp

hz_lcf_iu lcp_fhz hz_lcf lcp_fhz_fmf

hz_lcf_iu fhz_mcp

hz_lcf mcp_fhz_fmf

hz_lcf fhz_mcp_fmf

hz_lcf fhz_lcp_fmf

hz_lcf_iu mcp_fhz

Figure 6.17: A detailed analysis of performance characteristics of related strategy combinations in the
UM Translog domain. The edges represent a dominance relationship with respect to efficiency
(orange), stability (green), and reliability (blue). Red boxes denote undominated strategies.
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PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 84 10 10 14 17 14 10 14 19 18

du_fmf 84 22 22 22 34 22 22 22 34 33

fhz_fmf 13 8 5 5 5 5 5 5 5 5

fmh_fmf 55 11 1 6 4 6 1 3 1 4

iu_fmf 84 22 22 22 34 22 22 22 34 33

lhz_fmf 42 22 22 22 34 19 22 22 35 34

psaoca 49 10 5 7 5 4 2 7 5 5

sdr_fmf 1 5 5 9 9 9 9 9 14 9

EMS 25

UMCP 38 UMCP+ 1

SHOP 24 SHOP+ 10

ModSelection

Table 6.11: A strategy-component matrix of the ranks of reliability values in the UM Translog domain (blue
= within 1st quartile, beige = within median, red = beyond 3rd quartile).

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 84 57 43 51 71 50 43 40 38 68

du_fmf 84 58 47 52 68 51 48 49 31 73

fhz_fmf 62 28 23 37 59 31 22 23 25 58

fmh_fmf 72 44 34 38 48 36 19 23 10 51

iu_fmf 84 59 48 46 70 46 42 46 29 74

lhz_fmf 80 57 46 53 71 51 46 44 35 78

psaoca 78 51 33 47 60 43 25 41 33 63

sdr_fmf 43 28 31 31 58 28 25 25 23 47

EMS 52

UMCP 55 UMCP+ 45

SHOP 59 SHOP+ 65

ModSelection

Table 6.12: A strategy-component matrix for the ranks of stability values in the UM Translog domain (blue
= within 1st quartile, beige = within median, red = beyond 3rd quartile).

It is worth noting that the induced hierarchy does not include any contradictory dominance result and that
it exhibits two clearly dominating strategies (built from the same plan selection prefix) and one clearly
identifiable sink that is to be regarded as the inferior combination.

Our first observation is that the combinations with a HotZone plan selection do not only dominate their
rotated competitors but in practically all characteristics every strategy that deploys f planSel

FewerHZones as a sec-
ondary component. Regarding the question whether it is more suitable to prefer constrained plans or to
avoid them, our findings in the UM Translog domain are in favour of the analogous result in the Satellite
setting: preferring uncommitted plan structures for further development seems to be the more promising
method.

Let us examine the TankerTruck problem as an exemplary plan generation objective for the mcp/lcp strate-
gies ( f planSel

ConstrPlans and its inversion); a solution plan is shown in Fig. 6.18. As far as the “inter-” and “intra-
method” issue is concerned, the depicted causal structure is essentially representative for all UM Translog
problems: The transportation task is composed of a loading operation, followed by a transporter movement,
and finally an unloading procedure; some specific goods require an additional treatment. The coloured task
cliques as they are described in the figure’s caption represent the respective combinatorial choice with re-
spect to the suitable decomposition methods. The black causal links, which have to be synthesized by the
planning process, are the second dimension that influences the search effort. What makes these kinds of
problems considerable easier than the Satellite instances is mainly the fact, that the decomposition methods
operate along a deeply structured sort hierarchy such that the inter-method dependencies are typically re-
solved immediately after an expansion step due to variable constraints. For example, as soon as the system
commits to the (green) method of unloading a liquid transport, the only consistent expansion for the (red)
loading procedure is exactly that of the matching liquid transport loading – the parameter sorts in alternative
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Figure 6.18: The causal structure (top) of a solution to the “TankerTruck” problem in the UM Translog do-
main and the induced temporal structure (bottom). The coloured task nodes and causal links
indicate structures that are added to the plan in the context of an abstract task’s expansion:
specific handling of chemicals, loading and unloading operations, and a transport imple-
mentation.

methods induce an inconsistency. This constellation of constraints works significantly more effective than
solely relying on maintaining a consistent causality.

When we examine the search space that is built by the least constrained plan preference strategy for the
TankerTruck problem, displayed in Fig. 6.19, we first look at the key indicators: the lcp strategy visited
238 nodes with an average branching factor of 2,4 (branching ranges from 1 to 9 nodes) and a depth of the
tree of 32 (in which also the solution found). The ratio of open nodes is 8% and that of discarded plans
50%. The figure also shows three exmplary fringes A, B, and C, which exhibit the breadth-first style of
plan development. We can observe the same pattern of symmetry as we did for Satellite, which causes
f planSel
ConstrPlans−1 to behave this way: It is evidently a characteristic for the UM Translog problem, as we have

argued in the above paragraph, that task decomposition is typically not ambiguous. For example, we can
see that just above fringe A two complex task flaws are subsequently resolved by 9 decomposition each,
but we can also see that in both cases 8 of them are instantly discarded. That means, that the planning
system merely explores variations of basically the same implementations, which will naturally have (sooner
or later) the same ratio of constraints to plan steps. But this decomposition exclusiveness also explains the
high percentage of cut options in the plan space and consequently the moderate branching factor (having in
mind that it is only twice as high as in the considerably less complex Satellite domain). This confirms the
impression we got from the reliability analysis, namely that UM Translog problems are much “simpler” for
hybrid planning configurations than they appear regarding the overall complexity of the domain model. For
comparison, most Satellite complex task flaws can be addressed by two refinements that appear consistent,
see for example Fig. 6.6.

Fig. 6.20 visualizes the plan space as it is generated by the antagonistic “most constrained plan” strategy
f planSel
ConstrPlans and, as the above arguments have predicted, it is traversed in a depth-first manner. The search tree

is basically the same as for the lcp case, because the open nodes from the breadth-first search schema are
apparently very close to their final refinement possibilities, in all cases unresolvable flaw situations, though.
The numbers are consequently similar, although the explored space includes 385 nodes (which is 60% larger
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6.4 Evaluation Results in the UM Translog Domain
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Figure 6.19: The spanned plan space by the modification selection f modSel
HZone . f modSel

LCF . f modSel
IndUniHS and plan

selection f planSel
ConstrPlans−1 . f planSel

FewerHZones with a hybrid planning system configuration on the
TankerTruck problem in the UM Translog domain (red = solution, blue = open node, beige
= discarded node).
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6 Empirical Evaluation
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Figure 6.20: The spanned plan space by the modification selection f modSel
HZone . f modSel

LCF . f modSel
IndUniHS and

plan selection f planSel
ConstrPlans . f planSel

FewerHZones with a hybrid planning system configuration on the
TankerTruck problem in the UM Translog domain (red = solution, blue = open node, beige =
discarded node).
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6.4 Evaluation Results in the UM Translog Domain

than before) and is slightly deeper (35 nodes): the branching factor ranges from 1 to 9 with an average of
2,3; there are naturally only few open nodes (approx. 0,3% if all nodes) but with a 55% fraction of discarded
plans the eventual shape of the tree is not substantially different. It is however obvious from the figure, that
the TankerTruck problem is already beyond the point where the mcp plan development can be competitive
to its inversion. The depicted fringes A and B are snapshots from the early and late planning phases,
respectively, which show that a very critical decision lies close to the initial node (green arrow at node 20).
The two alternatives at this decision point are two decomposition methods for an abstract movement, one that
assumes that the transport vehicle is at the customer site and one that includes a prior additional movement
to it. The latter does not constitute a solution to the problem, however the “superfluous” additional task is
tightly embedded by causal relationships, which makes it systematically attractive for this heuristic. Please
note that the same problematic decision is observable for the corresponding Satellite example in Fig. 6.7
(node 9, becomes selected not until the D fringe). The f planSel

ConstrPlans strategy is therefore biased towards a
specific kind of UM Translog problems and will become decreasingly useful the more of the un-addressed
sub-problems occur. Aware of this detail, we have to specify the above result of the least constrained plan
heuristic performing a breadth-first search: it is in fact slightly preferring the solution-path side of the search
tree, the one without the superfluous task, however completing causality makes the strategy loose its focus
and return to the “wrong” nodes, thereby processing the fringe layer-wise.

Let us finally compare these search space findings with the top performing reference strategy combination of
f modSel
LCF . f modSel

IndAdaptHS and f planSel
FewerModBHS . f planSel

Fewer−M (see Fig. 6.21). While the least commitment modification
selection is responsible for the lean entry path, it is the modification HotSpot-aware plan selection that defers
the further development of nodes 19 (see green arrow), 62 (a member of fringe B), and 87 (is processed
together with solution node). A particularly remarkable decision is the early “critical node” 19, which
contributes most to the strategy’s efficiency and reliability; it is the same decision at which the mcp strategy
fails. The numerous interactions between the flaw resolution proposals for the superfluous tasks and those
for the rest of the plan make this branch of plan development unattractive for the HotSpot strategy. Although
we suggest further experimentation, in particular with increasingly complex maps, we are confident that this
positive effect of the heuristic will continue to pay off for the current hybrid configurations. This is mainly
because of the “causally dense” method design in UM Translog, which we have discussed above and in
which missing properties are typically earlier detected than superfluous ones. For the sake of completeness,
we note that this plan space consists of only 88 nodes with a maximum depth of 32, which is probably12

optimal. The average branching factor is 2,4 (ranging from 1 to 9), 3% of the nodes are regarded as open,
and 56% are discarded refinements.

Returning to Fig. 6.17, the analysis identifies further strategy relationships: Even clearer than in the cor-
responding Satellite analysis, the UM Translog domain favors strategies that deploy a f planSel

FewerHZones as a
primary plan selection rather than as a second one. All combinations with f planSel

FewerHZones . f planSel
ConstrPlans−1 and

f planSel
FewerHZones . f planSel

ConstrPlans dominate the switched variants in all characteristics practically completely.

Another result from the Satellite domain can be confirmed, but this time a negative one: the addition of
a third plan selection, namely the preference for plans with fewer modification options f planSel

Fewer−M , does
not stabilize the respective strategy combinations. Since in all but one cases there is no dominance result
between such strategies with a binary plan selection and its extension, we repeat our previous conjecture,
hoping that more experiments with larger fringes may give more insight on the influence of a third heuristic
in these cases.

The question whether CL+OCA or its specialisation PSA+OCA is the more suitable A∗ heuristic for hybrid
planning, will be answered in the section about classical strategies.

Concerning the methodologically closely related HotZone strategy components f planSel
FewerHZones and f planSel

LeastHZone,
the results in the UM Translog domain are more coherent than in the Satellite domain. We find the pref-
erence of fewer HotZone clusters consistently superior to that of preferring a lower maximum of HotZone

12Although breadth-first search constructs the plan space up to the same depth and is theoretically guaranteed to find a solution path
of minimal length, the deployed modification selection provides a different set of refinement options for lcp and this HotSpot
strategy. This influences also the cut of “unreachable” modifications (cf. p. 172) and leads, for instance, to the linear path between
nodes 4 and 10. The corresponding segments in the trees of the lcp and mcp combinations address other flaws, each induces three
alternative modifications.
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Figure 6.21: The spanned plan space by the modification selection f modSel
LCF . f modSel

IndAdaptHS and plan selection

f planSel
FewerModBHS . f planSel

Fewer−M with a hybrid planning system configuration on the TankerTruck prob-
lem in the UM Translog domain (red = solution, blue = open node, beige = discarded node).
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6.4 Evaluation Results in the UM Translog Domain

values. Strategy combinations with a primary FewerHZones plan selections are members of the most ef-
ficient strategies (10% of the candidates in Fig. 6.14) while there are no LeastHZone combinations. But
also a direct comparison gives a clear-cut result: FewerHZones individuals dominate their relatives almost
completely, namely in 24% of all possible cases with respect to stability and in even 84% and 91% in terms
of efficiency and reliability, respectively. Further experimentation will give us information about the reason
for the performance discrepancies between those two strategies in both domains. In particular, we have to
clarify if this can be attributed to the presence of recurring sub-problem patterns, for example, in analogy to
the multiple observation scenarios, by introducing additional (parallel) transportation jobs with additional
transportation means that allow an optional sharing of resources.

The evaluation of our modifications of classical strategies, shop+ and umcp+, confirmed some of the results
that we obtained in the Satellite domain: shop+ is substantially less efficient and stable than the original
SHOP, although it is found much more reliable than in the previous domain. Interestingly enough, the UMCP
strategy benefits from the enhanced plan selection in the UM Translog domain, its former testbed scenario
(see Sec. 5.2.2). While the unmodified UMCP is undominated in terms of efficiency (Fig. 6.14), the efficiency
and stability yield of umcp+ outperforms it on the absolute scale with an average ranking in the second quar-
tile (Tab. 6.8 and 6.12). With respect to reliability, shop+ is not only significantly superior to its ancestor,
but even positioned among the top performing strategies (Fig. 6.16 and Tab. 6.11).

Let us now turn to the analysis of the HotSpot strategies. In the Satellite problems, the direct plan selection
did produce better results than combinations deploying an indirect one. The corresponding UM Translog
result is less counter-intuitive: the combinations with f planSel

IndUniHS, the indirect uniform plan selection, are more
efficient than direct combinations in 26 cases, the opposite holds for 23, and more stable in 15, less stable
in 11. In terms of reliability, the domination is balanced with 31 for each. That means, that the indirect
HotSpot plan preference made up for the direct one and hast in the logistics scenario a slight advantage. We
may hypothesize that this is a result of the UM Translog plans containing more plan elements than in the
Satellite problems before. It appears plausible that the more structures are present, the less noisy the finer
granular calculations become and the more they are able to differentiate plans. However, we are also aware
of the tendency that both types of strategies play a minor role in the UM Translog domain and are even not
among the most performing individuals in any characteristic. Future experiments will have to investigate
whether there are application perspectives for this kind of strategy or they are conceptually subsumed by the
HotZone method and may be deployed only as subsequent decision support.

The situation with respect to HotSpot modification selections is a completely different one. The indirect
adaptive and indirect uniform HotSpot functions are the most successful modification selection methods in
terms of efficiency as well as reliability (see Tab. 6.8 and 6.11). But also the direct versions do perform
very well, and therefore we are now examining their relationships more closely. Fig. 6.22 gives an overview
over the dominance findings within this subset of evaluation individuals. The principle outcome is that
the direct uniform selection is dominated by every other variant over all characteristics. Concerning the
general comparison of uniform versus adaptive or direct versus indirect, the numbers are not decisive: while
the adaptive strategies dominate their uniform counterparts, a general relation between direct and indirect
cannot be deduced from the individual characteristics. It is remarkable that adaptivity positively contributes
in terms of reliability (two adaptive modification selections among the most reliable) and stability, even
if this contribution is in some cases a small one. Since these benefits have apparently not been gained
at the cost of efficiency (some adaptive candidates among the most efficient), we assume that the power
of the adaptive selections will emerge more prominently in larger problem constellations that enable the
indirect calculations and in more sophisticated weight and weight-adaption assignments. We are furthermore
confident that the positive evaluation of adaptive techniques in the Satellite and now in the UM Translog
domain can be confirmed in future experiments as well.

Compatibility between the HotSpot modification and selection functions is evident in the evaluation matri-
ces, in particular regarding efficiency (Tab. 6.8 to 6.12). Since the respective plan selections are far behind
most of their competitors, this is however not of too much relevance. More interesting is the combination of
similar HotZone strategies: deploying f modSel

HZone as the primary modification selection together with f planSel
LeastHZone

or f planSel
FewerHZones constitutes the most successful instances of the respective plan selections; in the latter case

the synergy is significantly higher and even results in a most effective strategy. It is also worth noting that
apparently the indirect HotSpot modification selections are very suitable combination partners for HotZone
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Figure 6.22: Quantitative dominance comparison between direct, indirect, adaptive, and uniform modifica-
tion selection in the UM Translog domain. Edge labels denote number of dominant instances in
/ contrary to edge direction; edge width corresponds to dominance ratio (orange = efficiency,
green = stability, blue = reliability).

Efficiency Stability Reliability
Strategy dom. dom. by dom. dom. by dom. dom. by
CL+OCA∗ 13 30 6 12 32 37
PSA+OCA∗∗ 23 16 7 10 52 16
UMCP 6 0 3 0 4 7
SHOP 11 0 3 0 13 9
EMS 11 0 3 0 9 6

∗ Average dominance values for 10 combinations.
∗∗ Average dominance values for 11 combinations.

Table 6.13: The dominance situation for the classical strategy implementations in the UM Translog domain.

plan selection functions. This result matches the conceptual design of the functions such that addressed
HotSpots shape the HotZones of the subsequent refinement plans.

Analysis of Classical Strategies

The leading questions for this empirical study explicitly asked for the performance of literature’s classical
strategies. Concerning efficiency, the candidates from hierarchical planning are well positioned in the field
of competitors in the UM Translog domain: UMCP, SHOP, and EMS are all members of the most efficient
strategies (Fig. 6.14). The derivates from Partial-Order Planning, CL+OCA and PSA+OCA, are less promi-
nent and only the latter seems to be efficient and very reliable here. The concrete dominance situation is
given in Tab. 6.13: UMCP, SHOP, and EMS are undominated in terms of efficiency and stability, confirming
the excellent efficiency of the trio. However, their numbers of dominated strategies in UM Translog is sig-
nificantly smaller over all characteristics than before in Satellite, although the general dominance incidence
doubled. Their outstanding performance is therefore not based on being consistently more efficient or reli-
able than other strategies, but on being specialized in particular problem instances and therefore harder to
be dominated by others. The experimental data reveals, for instance, that EMS holds rank 1 in the efficiency
analysis of the RegularTruck-3Locations problem, but its average rank is 43. UMCP, average rank is 48, is
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Figure 6.23: Quantitative dominance comparison between classical strategy combinations in the
UM Translog domain. Edge labels denote number of dominant instances; edge width corre-
sponds to the ratio of dominance declarations to the total number of combinatorial possibilities
(orange = efficiency, green = stability, blue = reliability).

exceptionally efficient in the AutoTraincar problem, where it gains rank 5 while most other strategies fail
completely. SHOP is an expert for the AutoTraincar and the 2-RegularTruck problems, but despite its 1st
rank there, its average position is only the 34th (see also Tab. B.4 to B.6).

The classical CL+OCA strategy and its hybrid counterpart PSA+OCA have improved their standing com-
pared to the Satellite domain results. Both strategy classes are more efficient, stable, and in particular
more reliable than before, while at the same time reduced the number of situations in which they are
dominated. In addition, it has to be taken into account that the inter-class dominances have been re-
duced drastically, and in these problems, only about 10% of the dominated strategies are from the same
class.

In order to determine the adequacy of designing a strategy as to address expansion eagerly versus cau-
tiously, Fig. 6.23 focuses on the dominance results within the subset of classical strategies. As we can
see, there is no dominance finding between UMCP, SHOP, and EMS; the question for which decomposition
tactics to deploy in general cannot hence be answered yet for the UM Translog domain. The only evident
finding is that PSA+OCA combinations are definitely more reliable and stable as CL+OCA strategies, a
tendency that is confirmed by the prominent performance of the PSA+OCA plan selection – four combi-
nations are among the most efficient strategies (Fig. 6.14) – and the respective rankings (tables 6.11 and
6.12).

An idea for an alternative interpretation of the results in Fig.6.23 may also be the following: Since UMCP,
SHOP, and EMS are so successful and in particular dominate CL+OCA and PSA+OCA (here only in few
cases, but more in the Satellite domain) it is probably a value in itself to adopt “a” attitude towards the issue
of task decomposition rather than regarding it as par inter pares. But on the whole, we feel that upon the cur-
rent data a definite judgement for or against early threat detection cannot be reached.

Together with the previous results from the Satellite domain we suggest further experimentation on this
matter, although we believe that our findings so far already indicate that in spite of the success of the clas-
sical strategies our flexible planning strategy with their opportunistic modus operandi will become widely
accepted.

Problem Analysis

Following our leading questions (Def. 6.6), we now turn from interpreting the strategies to interpreting the
characteristics of the problem instances. Analogously to the strategy performance, we present diagrams
that show the mapping of strategy results on UM Translog problems in the diagrams Fig. 6.24 (efficiency
difficulty), 6.25 (stability difficulty), and 6.26 (reliability difficulty). Recalling the problem descriptions
from the experimental setup section (p. 224), there are only few expectations with respect to emerging
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Figure 6.24: Difficulty of the problems in the UM Translog domain in terms of efficiency.
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Figure 6.25: Difficulty of the problems in the UM Translog domain in terms of stability.

difficulty levels except the variations of a regular truck transport in which an additional package and a
slightly more complex traveling route are involved.

Efficiency difficulty is only weakly developed in the UM Translog problems. The double transport prob-
lem 2-RegularTruck was expected to be more difficult than the singular ones, but obviously, there were
only the three shown problem that could be solved more efficiently by the evaluation candidates. To our
disappointment, the “trivial” result that the double transport or the more complex one takes consistently
longer to be planned than the single regular one cannot be found. Another unintuitive outcome is missing,
too: the AutoTraincar-bis problem describes an automobile transport by train (the AutoTraincar problem)
in which the transportation means are initially available at the customer’s place. The additional effort that
is necessary to bring the locomotive to the transport’s origin is not reflected by a reduced efficiency, that
means by AutoTraincar-bis dominating AutoTraincar in terms of efficiency. In summary, if a solution to
one of the UM Translog problems is found, the search effort is not consistently higher for most of the
instances.

Difficulty in terms of stability is statistically the same for all posed problems. Since there is no prob-
lem inducing a higher sample variance on all strategies, our UM Translog problem portfolio cannot con-
tribute to the corresponding discussion of the Satellite domain. We encourage our hypothesis that sta-
bility may not be a very useful problem characteristic on such an inhomogeneous set of strategy candi-
dates.

A completely different situation is encountered in the reliability analysis of the UM Translog problems as
shown in Fig. 6.26; its dominance relationships induce fine granular difficulty levels. We can see that it is
considerably more difficult to reliably produce plans for two transportation tasks than for a single (which is
trivial) and also that is more difficult to do so than for a slightly more complex routing sub-problem. In this
sense, the above mentioned plausibility issues are addressed. We also get from this analysis the information
that the intuitively more complex expansions, that means, the liquid loading procedure for tankers and the
transportation means availability, do not introduce a significant overhead for plan generation. The only
consistently conceivable overhead that is apparently relevant is the problem of the indirect navigation of
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Figure 6.26: Difficulty of the problems in the UM Translog domain in terms of reliability.

trains: while it is the railroad car that actually transports the good (and is bound by the parameters of
the respective tasks) it is however the locomotive that is to be moved. This obviously induces enough
combinatorial sub-problems that many strategies fail on these problems instances (cf. complete presentation
of average failure rates in Tab. B.6).

As we stated before, the number of involved plan steps is not an issue in hybrid planning; the UM Translog
model puts this more precise, namely that the key factors are a tight pre-defined causality in the expansion
networks and a strong dependency among the decomposition methods. Since the evaluated strategy port-
folio is on the whole capable of handling the posed problem instances – at a moderate failure rate of 23%
on average – we are confident that future experiments will show how the above findings can be applied
to scenarios with multiple jobs, joint and exclusive transportation requirements, and more realistic traffic
environments.

6.5 Evaluation Results in the CrissCross Domain

Efficiency-Centered Performance Evaluation

When we introduced the CrissCross domain in Sec. 5.2.3 we described its design as a test case for the
strategies that perform HotSpot and HotZone calculations. But while Satellite and UM Translog proved to
be appropriate domains for these strategies in terms of efficiency, the CrissCross domain is apparently most
efficiently addressed by others.

As we can see, there is a large number of finalists in the efficiency-centered performance evaluation (Fig. 6.27).
The subsequent stability and reliability analyses however produce substantial additional dominance results,
which reduce the candidate set to the following three top performing strategies:

• f modSel
LCF . f modSel

EMS with f planSel
F/TE . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
F/TE . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
PSA+OCA
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Figure 6.27: The efficiency-centered performance evaluation in the CrissCross domain. Nodes are the most
efficient strategies, edges represent stability (green) and reliability (blue) dominance. Node an-
notation shows number of strategy combinations dominated by the node in terms of efficiency,
stability, and reliability (red = undominated strategy).
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Figure 6.28: The relative search efficiency of the undominated strategies in the CrissCross domain. 100%
on the vertical axis corresponds to a “perfect” strategy that solves the problem immediately, 0%
represents the worst efficiency value in the experiments.

The winning combinations do not occur in the previous evaluations of the other planning domains. But
we find again strategies that appear to perform rather poorly like f modSel

HZone . f modSel
LCF with f planSel

ConstrPlans−1 .

f planSel
FewerHZones . f planSel

Fewer−M , which only dominates one single competitor in every category.

With 42 efficiency-undominated strategies, Fig. 6.27 contains by far the largest candidate set in our em-
pirical study. This raises of course the question whether all these individuals, and in particular the above
winning strategies, perform exceptionally good or the remaining 51 so bad or all together so diverse that no
dominance can be constituted? The answer lies somewhere in between: On the one hand, the data shows
that the strategies’ performance ranges considerably from problem to problem (cf. efficiency data table B.7)
and this fluctuation is certainly a reason for the size of the candidate set. On the other hand, the winning
strategies perform very well as can be seen in Fig. 6.28, which puts the efficiency values into perspective of
the complete spectrum of results. P0 and P1 are not representable in a meaningful way by the figure: the
difference between the best known result and the worst case is hardly visible and the relative performance
gain is therefore minimal. For the other problems, we can see that they appear to be addressed quite well
by the evaluation winners, not as well as in the UM Translog domain, but better as in Satellite. This is also
additional evidence for the choice of analysis method, because the dominance “cascade” we applied obvi-
ously selects (as a by-product) relatively competitive strategies. We would like to point out, however, that
this relative measure will have to be re-evaluated in more advanced candidate sets of future experimentation
in order to get a better scale resolution. At the moment, all reasonably good strategies are densely clustered
due to the inclusion of extremely bad performing strategies that induce a wide range on the relative scale.
Instead of the worst value, we may also use in the future a more performing statistical entity as point of
reference, for example, the first quartile.

Let us now look into the contributions of the strategy components, divided into modification and plan se-
lections in the matrix in Tab. 6.14. In contrast to our previous findings, the CrissCross problems do only
induce a more or less clear performance pattern on the plan selection functions and not on the modification
selections. A clearly positive association is given for the components f planSel

FewerHZones . f planSel
Fewer−M (fhz_fmf)

and f planSel
F/TE . f planSel

Fewer−M (sdr_fmf); the latter leads as part of two combinations the field of candidates.
These two are followed by the PSA+OCA method, which is involved in the third winning strategy. The plan
selection components that have a negative influence on the efficiency of the strategy are the simple CL+OCA
heuristic, the direct uniform HotSpot, and the preference of fewer modification-based HotSpots. Regard-
ing the modification selection functions, we can only see a relatively weak modification-based HotSpot
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ModSelection

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 62 67 60 67 63 66 64 63 67 66

du_fmf 37 70 51 56 37 65 56 58 48 47

fhz_fmf 28 21 29 34 21 29 15 26 36 29

fmh_fmf 61 42 63 48 61 50 49 50 50 54

iu_fmf 32 68 49 58 28 63 55 59 45 43

lhz_fmf 37 39 52 54 43 53 49 50 44 43

psaoca 42 34 32 36 33 32 22 22 49 40

sdr_fmf 23 22 34 35 19 25 11 23 30 24

EMS 19

UMCP 37 UMCP+ 66

SHOP 25 SHOP+ 53

Table 6.14: A strategy-component matrix of the average ranks of efficiency values in the CrissCross domain
(blue = within 1st quartile, beige = within median, red = beyond 3rd quartile).
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Figure 6.29: The reliability-centered performance evaluation in the CrissCross domain. Nodes are the most
reliable strategies and (green) edges represent stability dominance. Node annotation shows
number of strategy combinations dominated by the node in terms of efficiency, stability, and
reliability (red = undominated strategy).

preference lcf_mod and the direct adaptive and uniform HotSpot selection. In general, no consistently
performing modification selection can be identified. Consequently, there are no distinct crossing points as
well.

It is not clear yet, why the CrissCross domain does not induce a recognizable efficiency pattern onto the
modification selection functions. The data indicates that efficiency depends exclusively – in contrast to
primarily – on the plan selection principle and that it is very fragile with respect to the modification selection
function.

Reliability-Centered Performance Evaluation

Reliability has been the harder dominance criterion in the Satellite and UM Tranlsog domains, and so it is
in CrissCross, too. The reliability-centered performance evaluation is conducted on a candidate set of only
6 strategy combinations and the graph representation of the findings is identical to the top-level layers in the
efficiency-centered evaluation graph. As it can be seen in Fig. 6.29, the undominated strategies and winners
of this evaluation schema are the same trio as for efficiency above:

• f modSel
LCF . f modSel

EMS with f planSel
F/TE . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
F/TE . f planSel

Fewer−M

• f modSel
LCF . f modSel

IndAdaptHS with f planSel
PSA+OCA

In the first evaluation scenario, the Satellite domain, we noted that it is a mere coincidence if the candidate
and/or winning strategy sets overlap for both types of evaluation. Obtaining this result for the third time
however leads us to the assumption that in general an efficient strategy is at the same time a reliable one as
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Strategy Average Failure Rate
Best value 0%

f modSel
LCF . f modSel

EMS with f planSel
F/TE . f planSel

Fewer−M 0%

f modSel
LCF . f modSel

IndAdaptHS with f planSel
F/TE . f planSel

Fewer−M 0%

f modSel
LCF . f modSel

IndAdaptHS with f planSel
PSA+OCA 0%

1. Quartile 15%
Average value 31%
Median 31%
3. Quartile 46%
Worst value 82%

Table 6.15: Positioning of the most reliable strategies within the field of competitors in the CrissCross do-
main.

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 28 52 36 53 37 52 33 33 59 58

du_fmf 22 67 38 43 19 58 38 31 35 34

fhz_fmf 11 15 15 16 2 15 5 11 11 2

fmh_fmf 38 8 40 25 37 29 24 24 29 27

iu_fmf 13 59 45 41 5 51 28 31 29 28

lhz_fmf 19 36 25 37 28 34 36 36 28 30

psaoca 11 11 8 7 3 6 1 1 36 25

sdr_fmf 11 17 21 21 1 16 1 11 13 1

EMS 1

UMCP 23 UMCP+ 53

SHOP 20 SHOP+ 48

ModSelection

Table 6.16: A strategy-component matrix of the ranks of reliability values in the CrissCross domain (blue =
within 1st quartile, beige = within median, red = beyond 3rd quartile).

well, although it does not necessarily need to be. In particular, we are convinced that the logical negation
does hold: An unreliable strategy is not an efficient one. We also conjecture that the reliability-centered per-
formance evaluation is systematically much more selective than the efficiency-centered analysis, even for
a larger number of planning episodes per configuration, which will lead to more diverse reliability values.
In order to minimize the number of experiments that are necessary to identify suitable strategy combina-
tions for a given domain, we therefore suggest to conduct exclusively the reliability-centered performance
evaluation on the full set of candidates. All kinds of efficiency analysis can be performed on the reduced
set of reliable strategies thereafter and we can be relatively sure that we do not miss a highly performative
candidate.

Tab. 6.15 gives us the statistical characteristics that describe the candidate set in terms of reliability. Like for
the UM Translog domain, the minimum failure rate lies at 0%, that means, the most reliable strategies never
failed a run; the three winning strategies were also perfect ones. The maximum failure rate is much lower
than in UM-Translog, the quartiles are however much larger values; the evaluation population has therefore
more difficulties to solve the CrissCross problems than the UM Translog instances. On the other hand,
the Satellite domain findings show that there are apparently even more complications, since the respective
quartiles are even above the CrissCross values.

We conclude our reliability analysis with a compilation of the participating components in a matrix of ranks
(Tab. 6.16). It apparently confirms the findings from the above efficiency analysis with only minor devia-
tions: f planSel

PSA+OCA, f planSel
F/TE . f planSel

Fewer−M (sdr_fmf), and f planSel
FewerHZones . f planSel

Fewer−M (fhz_fmf) have a positive
connotation, the direct and indirect HotSpot and the CL+OCA selection a negative one. Like it is the case
for all our reliability findings, there is no clear trend with respect to the modification selection compo-
nents.
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Primary plan selection Total Undom. e/s/r % EC RC
f planSel
ConstrPlans−1 2 2 2 – 67 – –

f planSel
First 3 3 2 1 67 – –

f planSel
F/TE 10 9 8 3 67 2 2

f planSel
ConstrPlans 2 2 2 – 67 – –

f planSel
PSA+OCA 11 11 4 2 52 1 1

f planSel
FewerHZones 14 12 10 – 52 – –

f planSel
LeastHZone 10 2 6 – 27 – –

f planSel
IndUniHS 10 1 4 – 17 – –

f planSel
FewerModBHS 10 – 4 – 13 – –

f planSel
DirUniHS 10 – 3 – 10 – –

f planSel
CL+OCA 10 – – – 0 – –

f planSel
Addr−FAbstrTask

−1 1 – – – 0 – –

Total: 93 42 45 6 33 3 3

Table 6.17: Primary plan selections in the CrissCross domain: Number of undominated system configura-
tion instances according to (e)fficiency, (s)tability, (r)eliability, efficiency-centered performance
(EC), and reliability-centered performance (RC). % stands for the ratio of possibly to factually
undominated.

PlanSelection ems_lcf hz_lcf lcf_da lcf_du lcf_ems lcf_hz lcf_ia lcf_iu lcf_mod lcf_pExp

cloca 59 71 58 72 67 76 75 75 78 71

du_fmf 38 67 41 44 38 46 49 51 46 48

fhz_fmf 25 19 26 30 20 27 10 20 31 29

fmh_fmf 51 42 57 42 46 47 48 49 47 45

iu_fmf 31 65 42 50 29 56 48 52 46 40

lhz_fmf 32 35 47 42 44 54 48 47 40 32

psaoca 49 38 42 41 37 47 27 38 60 43

sdr_fmf 21 27 33 37 21 19 8 25 26 27

EMS 24

UMCP 44 UMCP+ 78

SHOP 43 SHOP+ 63

ModSelection

Table 6.18: A strategy-component matrix for the ranks of stability values in the CrissCross domain (blue =
within 1st quartile, beige = within median, red = beyond 3rd quartile).

Analysis of Strategy Components

When we break down the quantitative undominance occurrences in the CrissCross domain according to the
deployed primary plan selection, we obtain the data displayed in Tab. 6.17. In accordance with the above
efficiency results, we find a higher total ratio of undominated strategies (33%) than in the other domains; we
note that there is also a wider “gap” between those strategies below and above the threshold borderline. It is
furthermore interesting to see that the increase of undominated strategies in relation to the previous results
(cf. Tab. 6.4 and 6.10) is restricted to efficiency only. Apart from the extremely successful principle of prefer-
ring the smaller detection ratio (F/TE), there are three more plan selection functions that have the maximum
ratio of 67% undominated combination instances. These functions are apparently candidates with a high
performance potential and further experiments should not forget to include them.

Before we move on to the specific strategy subsets, we would like to complete the general picture with the
component-wise stability analysis. Tab. 6.18 does however not give us additional information, it only con-
firms that those positive and negative associations between performance and specific plan selections that we
reported above are reflected in the stability property as well. With this result, we have no characteristic that
can be uniquely attributed to one of our modification selections. There are in principle two explanations for
this CrissCross particularity: First, our evaluation’s modification selection repertoire may be not represen-
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Figure 6.30: The causal structure (left) of a solution to the P2 problem in the CrissCross domain and the
induced temporal structure (right).

tative enough for the problems in this domain. In this case, further experimentation became necessary and
we hoped that more candidates from our global strategy portfolio would turn out to be definitely suitable
or unsuitable, respectively the additional participants would shape the statistical ranges such that a better
judgement on the present strategies could be made. We believe that this explanation is valid, but also that it
is not the only mechanism we observe.

For the second explanation we have to draw from the basic strategy concepts, in particular the “task sharing”
of modification and plan selection functions. Until now, we perceived strategy performance as an emerg-
ing phenomenon to which the two selection mechanisms contribute in a modular way. This was evidently
confirmed for Satellite and UM Translog problems by the exceptionally good or bad performance of good
or bad components, respectively. In essence, finding a top performing strategy can be viewed as finding the
right combination of top performing plan and modification selections. While this argument is generally a
valid one, it does not take into account the fundamental difference between the selection parts, which is their
strategic scope, that is to say, the local plan perspective of modification selection and the global fringe per-
spective of the plan selection. In this view, a non-existent modification selection trend can be interpreted as
a reduced influence of the local decisions on performance per se. Of course, there is still an interdependence
between the two strategy components, otherwise the results for a plan selection would not significantly differ
from one modification selection function to another. But for some reason, in this domain providing suitable
plan refinements does not support or delay the process systematically.

We conjecture that the CrissCross domain is completely different in nature and therefore look more closely
into the corresponding plan generation processes. Fig. 6.30 shows a typical solution structure in the Criss-
Cross domain, namely in the P2 problem instance. If we recapitulate the domain’s task decomposition
structure (Fig. 5.17, p. 211), the causal interactions between the alternative expansions are deliberately hid-
den in the hierarchy of method application. As an effect of this way of modelling, any domain-independent
strategy in principle cannot properly anticipate the refinement situation beyond the currently processed plan.
These considerations perfectly agree with our findings and explanation hypothesis above. The final evi-
dence gives us the examination of a typical search space in the CrissCross domain. Fig. 6.31 shows two
of them, taken from two completely different strategies. The left one is built by the preference of more
constrained plan, the typical depth-first method, and the right one is constructed by a modification-based
HotSpot avoidance.

We can make two important observations here: First, there are long chains of singular decisions, so-called
“unit modifications”, which are not subject to modification selection (cf. p. 172). The recurring deferral of
“real” points of choice in the generation of refinements shifts search control to a great extent towards plan
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Figure 6.32: The spanned plan space by the modification selection f modSel
HZone . f modSel

LCF . f modSel
IndUniHS and plan

selection f planSel
ConstrPlans−1 . f planSel

FewerHZones with a hybrid planning system configuration on the P2
problem in the CrissCross domain (red = solution, blue = open node, beige = discarded node).

selection. Second, this effect is emphasized by the method design: the first branching decisions generate
unsuspicious alternative refinement options, which are consequently not to be discarded like it is often the
case in UM Translog or Satellite. It is important to stress that the alternative expansions are more or less
equivalent from the point of view of most modification metrics, including the HotSpot and HotZone compu-
tations, since they do not introduce substantially differing linkage. The treatment of causal threats, which are
inevitable but hidden in the CrissCross domain, happens at an extremely late stage of the planning process:
The green arrow in the left part of Fig. 6.31, respectively the “E” labeled arrow in the right figure point to
this decision. It is only at these points where modification selection does begin to contribute significantly
and is actually able to make a difference. Please note that in both search spaces threat handling only occurs
once, namely on the solution path, and that only one inconsistent plan can be discarded before a solution is
reached. Given that many strategies draw information from sufficiently different and evidently inconsistent
candidates, we can thus imagine how difficult these problems must be. The global failure rates are only in a
tolerable range because of the many symmetrical solutions that are available.

The basic numbers for the search spaces are the following: f modSel
HZone . f modSel

LCF . f modSel
IndUniHS with plan selection

f planSel
ConstrPlans . f planSel

FewerHZones explores 40 plans up to a depth of 30, leaving 21 open (53%) and discarding one
(3%). Taking into consideration the 16 unit modifications (many of them are inference modifications),
the branching factor is 2,4. The other focused strategy f modSel

LCF . f modSel
IndAdaptHS with f planSel

FewerModBHS . f planSel
Fewer−M

operates in a similar fashion and hence the similar data is obtained: 47 nodes are explored in three major
threads, the space is 30 nodes deep and contains 28% open (13) and 2% (1) discarded nodes. The threads are
mainly built from unit modifications, including many inference modifications, and with only nine decision
points, the branching factor is about 1,4.

For the sake of completeness, let us also look into the less constraint plan preference, which represents the
breadth-first type of plan space traversal. Fig. 6.32 shows the search space as it presents itself to f modSel

HZone .

f modSel
LCF . f modSel

IndUniHS with f planSel
ConstrPlans−1 . f planSel

FewerHZones. The search tree is certainly too large to be displayed
properly, but the basic shape is already indicating the key problem: the combinatorial explosion beneath the
three linear threads. This particular planning episode defers two open nodes in the main trunk and focuses on
the third one that induces a huge amount of symmetrical causality construction and fixing. The figure shows
a small detail in a magnification of the area in which the solution is found; it thereby gives an idea why this
plan generation took ten times longer than the runs above. We see a construction of causal links that leads to
numerous isomorphic sub-trees of height 5 in which more or less every second leaf constitutes a developable
candidate. We have examined a similar, complete tree, generated by true breadth-first plan selection with
an LCF modification selection, which confirms that the first solutions appear at a depth of 6, just as they
do here. We also find that the space fragment visited by the lcp component as it is shown in Fig. 6.32 is
actually representative in terms of self-similar subspaces. The breadth-first strategy encounters 20.000 twin
solutions within the first 70.000 nodes (the fringe contains at this point 40.000 nodes).13 In other words, if

13A comparison: The first ten solutions for the CrissCross P2 problem are found by the breadth-first search within 5.400 cycles at a
final fringe size of about 3.300 nodes, that means, the fringe holds more than 60% of the nodes. In the Satellite problem that deals
with 2 observations on one platform in one mode, the first ten solutions take 26.800 cycles and the fringe contains only 2.100 nodes
(8%) and for UM Translog we reach the ten solutions for the TankerTruck problem in 2.400 cycles with a fringe size of 170 (7%).
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Figure 6.33: A detailed analysis of performance characteristics of related strategy combinations in the Criss-
Cross domain. The edges represent a dominance relationship with respect to efficiency (or-
ange), stability (green), and reliability (blue). Red boxes denote undominated strategies.

a strategy is clueless when it enters this area, it may need an arbitrary number of plan refinement steps to
reach a decisive search node.

Consequently, the difficulty for any strategy in the CrissCross domain can be attributed to two aspects: the
first is the amount of paths through the search space, in which more or less every alternative development
is supported up to a certain depth. The second is the fact that all these alternatives are very similar or even
isomorphic plans that cannot be discriminated by many selection principles. It is therefore an essential
property of a successful strategy to focus on a single sub-tree.

Let us return to the least constrained plan preference: the search space may be structurally degenerated,
but its global proportions are not much different from the successful examples. With a total number of 433
visited nodes and 132 open ones (30%), it is more or less a scaled version of the previous ones. The main
trunk with 36 unit modifications is of course similar, only the number of discarded plans is much higher (123,
28%). However, we have to keep in mind that with any additional planning objective, say, a second initial
task as in P2-2, the above described overhead with respect to causality maintenance will grow exponentially
and the degeneration effect will predominate.

As we have learned, plan selection in the CrissCross domain is in a more prominent position of strategic
decisions than before. The focus on related strategy combinations therefore becomes more significant as
well. The detailed performance analysis is given in Fig. 6.33 and the results are definite. Concerning the
relationship between the preference of more constrained plans and that of less constrained ones, we have
already discussed aspects of their plan space development. However, although the diagrams suggest the
depth-oriented mcp paradigm to be superior, our findings imply the opposite: in terms of performance
characteristics the results are that least constrained plan preference, that means f planSel

ConstrPlans−1 as primary
plan selection, is more efficient and reliable than the un-inverted strategy. We note that this unintuitive
result occurred in the Satellite domain as well, The reason for this is not trivial: For didactic purposes
we have chosen two extreme candidates for the example search spaces above such that the mcp strategy
did exceptionally well and the lcp exceptionally poor. But as we have argued before, the probability of
finding the right plan in a cloud of similar ones also involves chance, and in the larger problems the odds
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for encountering a plan are very high in some of the “threat resolution sub-trees” but at the same time
very low in others. Once a solution-free sub-tree is entered, a depth-first method will hardly come across
a solution efficiently (and sometimes even not within the given time horizon). This is the moment when
modification selection comes into play: The modification selection functions that are deployed in this sub-
series of experiments prefer modifications that evade HotZone flaws. As it turns out, the preference of a
more constrained plan leads to a tighter connectivity in the plan, which in turn leads to sets of uniformly
connected flaws – the HotZone modification selection becomes blind. As a consequence, the isomorphic
sub-trees typically do not contain unit modifications but multi-modification flaws, even more since the plans
are relatively well developed and therefore all forms of threat resolution become available. These plan
refinement options are mostly ordered randomly because the modification selection was un-decided. Hence,
a probabilistic element enters the process, a probability for hitting a solution path, which we cannot quantify
properly yet. In the end, as an effect of this phenomenon, we see the breadth-oriented approaches to be more
successful on average. We note that larger numbers of experimental runs per configuration are necessary in
order to address this issue and to find proper estimations for the success rates.

A last comment on the way of plan generation as it is performed by the strategy that is aware of modification-
based HotSpots (right diagram in Fig. 6.31): The green arrows in the figure point to important decisions and
show how they are deferred over the plan generation process. First, the trunk is developed in a straight thread
until plan A is reached. This plan stays as an unselected member in the fringe during the development of
the B thread and finally the thread that leads to C. These plans are then kept passive in the fringe while A is
revisited and developed into a solution. Such a kind of opportunistic plan focus pays off in the CrissCross
domain.

Let us now turn to other examples of strategy permutations, extension, refinements, and antagonists.

As we can see in the performance analysis of Fig. 6.33, the preference of fewer HotZone clusters is more
reliable and efficient than any other combination in the focus set, including the switched versions. The
addition of a third plan selection function is surprisingly decreasing performance in all configurations. But
recall the above findings concerning the plan space structure: the regular structure of the sub-trees makes
the additional fewer modifications preference ( f planSel

Fewer−M ) ineffective. We therefore believe that it is the
helpfulness of the third modification selection that an advantage of these strategies, rather than it would be a
matter of incompatibility of the third plan selection that is a disadvantage of the others. Another clear finding
is that the comparison CL+OCA versus PSA+OCA can be concluded because the CrissCross problems are
the third evaluation that confirms the usefulness of PSA+OCA; it is more efficient, stable, and particular
much more reliable (see data in Tab. B.9).

A more subtle question about strategy relatedness is that of preferring fewer HotZone clusters versus pre-
ferring plans in which the maximum overlap in HotSpot elements is minimal ( f planSel

FewerHZones and f planSel
LeastHZone

with labels fhz and lhz). While the Satellite domain did not provide clear results, the UM Translog prob-
lems showed a trend and the CrissCross domain confirms it: Strategies that deploy the preference of fewer
HotZone clusters are consistently better performing than those with lhz. This result manifests itself in the
efficiency-centered analysis where 12 fhz combinations participate but only 2 lhz (Fig. 6.27) and in the
significantly better fhz ranking results in the individual characteristics (Tab. 6.14, 6.16, and 6.18). But also
in direct comparisons the FewerHZones plan selection dominates the LeastHZone instances in 14% of all
possible cases in terms of stability and in 60% of all cases with respect to reliability. We however repeat our
suggestion from the UM Translog domain, namely that these result have to be confirmed in experiments that
are dedicated to examining the role of multiple similar sub-problems.

The CrissCross domain is definitely no application scenario for the UMCP and SHOP strategy “enhance-
ments” umcp+ and shop+. Although the latter is at least undominated with respect to efficiency, the rank-
ings as well as the individual comparison is without doubt in favour of the original strategies.

Concerning the family of HotSpot functions, we first examine the respective plan selections f planSel
DirUniHS and

f planSel
IndUniHS. While in the Satellite domain the direct HotSpot computation was preferable and in UM Translog

indirect HotSpots were slightly superior, CrissCross problems are more adequate for the indirect function.
Although the ranking results are disappointing for both and hard to compare, a direct domination analysis
reveals that (1) 19 strategies which deploy the indirect primary plan selection IndUniHS are more efficient
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Figure 6.34: Quantitative dominance comparison between direct, indirect, adaptive, and uniform modifica-
tion selection in the CrissCross domain. Edge labels denote number of dominant instances in
/ contrary to edge direction; edge width corresponds to dominance ratio (orange = efficiency,
green = stability, blue = reliability).

than their direct counterparts and 15 less, (2) 10 are more stable with 7 against, and (3) 31 indirect com-
binations are more reliable with only 17 opposite findings. The superiority is not a completely convincing
one, but the tendency is clear. However, with one exception in the efficiency-centered performance eval-
uation, the individuals that are built from the HotSpot plan selections do not perform satisfactory in this
domain as well. This supports our conjecture from the UM Translog discussions that the basic HotSpot con-
cept is better suited for modification selection or as a subsequent tie-break decision. It has however taken
into consideration that CrissCross plans are relatively small in terms of plan steps and state facts and are
therefore causally very dense structures. This constellation is naturally not very well suited for the (indi-
rect) HotSpot selection. From this point of view, these functions contribute surprisingly well to the strategy
instances and we recommend that they should be included in further experimentation as secondary plan
selections.

The modification selection functions that are based on the HotSpot technology do perform well, but as we
have seen above, the CrissCross domain does not induce a clear positive or negative connotation on any
modification selection. It is however worth noting that three of the six most reliable strategies and 15 of
the 41 most efficient ones are combinations with indirect adaptive and indirect uniform modification selec-
tion; two of them are even rated most performing in both categories (Fig. 6.27 and 6.29). We focused the
evaluation results on the clique that deploys HotSpot modification selection functions – the corresponding
dominance analysis is shown in Fig. 6.34. The results are undoubtedly supporting the deployment of an
indirect HotSpot computation rather than a direct one, the respective strategies dominate the direct combi-
nations over all characteristics clearly. Secondly, the adaptive HotSpot strategies are apparently more stable
and reliable than the uniform versions. We believe that the minor inefficiency is due to an adaptation lag
and therefore suggest more experiments concerning suitable initial HotSpot weights and adaptation algo-
rithms. But we would like to point out that even our initially blind-guessed strategy parametrization yields
a considerably more reliable behaviour than the static, uniform method.

The CrissCross part of our evaluation agrees on the suitability of indirect HotSpot computation for both,
modification and plan selection functions. We therefore may expect that the respective functions are compat-
ible and their combination to amplify the tendency of the components: The experimental data however shows
that neither combination, that means neither f modSel

LCF . f modSel
IndUniHS f planSel

IndUniHS . f planSel
Fewer−M nor f modSel

LCF . f modSel
DirUniHS

f planSel
DirUniHS . f planSel

Fewer−M , exhibits a satisfactory efficiency, stability, or reliability above the median (Tab. 6.14,
6.18, and 6.16). The same holds for a cross-wise combination, too. The CrissCross domain displays once
more the same phenomena as the Satellite domain.

The HotZone technique turns out only to work synergetic if we deploy the f modSel
HZone . f modSel

LCF together with
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Efficiency Stability Reliability
Strategy dom. dom. by dom. dom. by dom. dom. by
CL+OCA∗ 7 8 1 48 7 54
PSA+OCA∗∗ 8 0 4 3 41 11
UMCP 13 0 2 0 19 14
SHOP 23 0 4 0 16 8
EMS 25 0 15 1 87 0

∗ Average dominance values for 10 combinations.
∗∗ Average dominance values for 11 combinations.

Table 6.19: The dominance situation for the classical strategy implementations in the CrissCross domain.

f planSel
FewerHZones . f planSel

Fewer−M . Its efficiency quality is very well, given the range of the plan selection, but re-
liability and stability leave a lot to be desired. All other combinations are not worth mentioning. Mix-
ing a HotSpot modification selection with a HotZone plan selection is apparently a promising concept:
f modSel
LCF . f modSel

IndAdaptHS with f planSel
FewerHZones . f planSel

Fewer−M is one of six suchlike combinations that are among the
most efficient ones (cf. Fig. 6.27). These results confirm our previous compatibility-related findings as
well as our suggestions to aim HotSpot and HotZone techniques at modification and plan selection, respec-
tively.

Analysis of Classical Strategies

The classical strategies are in good positions within the performance evaluation of the CrissCross problem
instances. EMS, UMCP, and SHOP are among the most efficient strategies, together with eleven PSA+OCA
combinations. Concerning reliability, and EMS and two PSA+OCA strategies constitute half of the most
reliable candidates and one of the finalist. Tab. 6.19 shows the dominance situation with respect to the
whole strategy population. It appears that the row order coincidentally reflects the global positioning in
the field. The numbers are a combination of the Satellite results (CL+OCA and PSA+OCA values) and
the UM Translog findings (UMCP and SHOP), including for example the mostly class-intern reliability-
dominance of CL+OCA strategy. The EMS planning strategy is an outlier with an incredible reliability
rate; it should however be mentioned that with no missed termination, the two PSA+OCA reliability final-
ists also dominate practically every other strategy and are concealed in the figure by the statistical mea-
sures.

Our focus on the quantitative dominance relationships within the classical subset of candidates summarizes
the observation above. Fig. 6.35 shows that the main differences between the classical combinations lie
in their reliability, the other characteristics round off the picture in a consistent way, their dominance is
however not as prominently developed.

That leaves us with the final question about proper plan development from the classical point of view: it is
definitely necessary in the CrissCross domain to take decomposition as a specific event into consideration
and not to treat it indirectly as a mere “cheap” provider of plan steps; otherwise the CL+OCA heuristic
would not have turned out to be insignificant. The supremacy of the expand-then-make-sound principle is
apparent and implies to suggest an extremely cautious policy with respect to task expansion. This finding is
consistent with our considerations about constrained plan preference above. SHOP is apparently not cautious
enough and with a global failure ratio of 11% (cf. Tab. B.9) considerably less reliable than EMS. We believe
that this is due to the relatively short parallel action sequences in the CrissCross solutions, which are causally
linked very late in the decomposition process. This structure does not develop regular causal chains, that
means, a pattern of step-by-step causality, and therefore does not allow to profit too much from dealing
with the issues of early tasks first. It is also interesting that the PSA+OCA way of plan development,
which intuitively would be placed “in the middle” between EMS and UMCP, cannot prevail itself against
the eager expansion tactics. This matches our view of losing focus when entering clusters of symmetric
plans.
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Figure 6.35: Quantitative dominance comparison between classical strategy combinations in the CrissCross
domain. Edge labels denote number of dominant instances; edge width corresponds to the
ratio of dominance declarations to the total number of combinatorial possibilities (orange =
efficiency, green = stability, blue = reliability).

Problem Analysis

The CrissCross domain has been designed for experimentation and has consequently a built-in concept of
difficulty levels along three dimensions: First, we defined three basic instances P0, P1, and P2 as repre-
sentatives for archetypical instances of causal relations in a small plan fragment. The included decomposi-
tion methods stand for possible ways of setting up corresponding decomposition hierarchies, including the
problem of “accidently” hiding causal connections. The intended difficulty progression is indicated by the
numbering: P0 is the simplest problem, followed by P1 and finally P2. The second and third dimension
are ways of combining basic instances in terms of repetition, for example three P0 instances into P0-3, and
in terms of diversity, for example handling a P0 and a P2 instance within one course of action for P0-P2.
Intuitively, we would expect that our strategies induce a difficulty ranking in terms of the number of basic in-
stances in the initial plan but not between repetitive and diverse problems, because of the variety of strategic
methods.

Our experiments basically confirm these expectations, however, partly due to the relatively small sample
sizes, not developed in such a fine granularity. Figures 6.36 to 6.38 show the problem difficulty levels as
they are induced by the respective strategy characteristic dominances. As we have expected, the single basic
instances are categorized as simple and the ternary problems as difficult. The missing categorization of
intermediate levels is however not satisfactory.

One remarkable insight into the CrissCross domain is probably closely related to the phenomenon of fuzzy
difficulty levels, namely the fact that CrissCross problems are already surprisingly complex problems per
se, as we have seen in the above performance investigations. An additional evidence is the global failure
rate of 31% (Tab. B.9), which is not as dramatic as in the Satellite domain, but considerably worse than for
UM Translog. CrissCross reminds us that while the hybrid planning paradigm allows for expressive proce-
dural constructs and concise modular formulations at the same time, its domain models are still responsible
for the shape of the search space. Although our approach works with completely declarative models, an
in some sense “unfortunate” formulation may nevertheless induce intractable combinatorial phenomena, in
other words, unnecessarily generate isomorphisms. Please note the subtle difference between isomorphic
plans and isomorphic plan generation paths, which both are an issue in refinement-based planning. Re-
call that systematic algorithms are able to avoid the generation of redundant paths at the cost of flexibility
(cf. discussion in Sec. 2.8.5) and that it is thereby also possible to eliminate many of the duplicate nodes
from the search tree with justifiable effort (finding all duplicates is computationally very complex). If we
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Figure 6.36: Difficulty of the problems in the CrissCross domain in terms of efficiency.
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Figure 6.37: Difficulty of the problems in the CrissCross domain in terms of stability.

were restricted to Partial-Order Planning, plan and plan generation path isomorphism would coincide and
we would “only” have to deal with systematicity and the like. In hybrid planning, the isomorphisms may
however be introduced as an integral part of the model itself, as it is the case with CrissCross, where we
see decomposition methods that basically produce the same refinements within two modification application
steps. Another anomaly14 that we observe in this domain is the scattered introduction of causal dependen-
cies that necessarily interfere in later refinements. In all these aspects, any systematic search gets fooled,
and the later the anomalies are encountered the more noticeable are their consequences. These are obviously
facets of planning’s computational complexity, which is inherent to any planning approach in general. We
would however like to point out that it is also a strong argument for empirical studies as integral part of
a planning application development: The evaluation data has to be analyzed for symptoms of pathogenic
hidden-causality situations like we described in the CrissCross analysis. This may initiate a re-design of the
domain model and in particular the decomposition methods, if appropriate.

In order to be able to draw further conclusions from CrissCross data, we believe it is necessary to classify the
participating strategies in basically three categories: (a) strategies that are able to handle repetitive problem
formulations, (b) those that are suitable for mixed settings, and (c) those that perform equally well in both.

14CrissCross has been deliberately designed as a challenge for planning strategies. It is however possible that a domain model acci-
dently exhibits the same characteristics. This can hardly be detected automatically, because it typically does neither affect consis-
tency nor produce undesired solutions; hence we call it an anomaly.
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Figure 6.38: Difficulty of the problems in the CrissCross domain in terms of reliability.
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Figure 6.39: The efficiency-centered performance evaluation across all three experiment domains. Nodes
are in the intersection of the three respective sets of most efficient strategies, edges represent
stability and reliability dominance in the Satellite (blue) and UM Translog domain (red).

We suggest to define at least two additional basic instances and corresponding combinations and then to cat-
egorize the evaluation participants in a pre-analysis phase. When the above examinations are re-conducted
in this new setting, the CrissCross domain will not only serve as a testbed for complicated causal interdepen-
dencies but also as a classifier for the ability to handle repetitive sub-problems.

6.6 Discussion

6.6.1 Global Results

While the previous sections focused on the interpretation of our empirical findings in each domain separately,
we are now briefly revisiting some of the results in order to investigate what kind of domain-independent
conclusions can be drawn from the data.

A question that immediately comes to mind is certainly whether the strategy portfolio contains a domain-
independently well performing candidate or not. Since the dominance analysis method abstracts from the
actual characteristic values and hence from domain-specific ranges, we can merge the results from the
efficiency- and reliability-centered analyses. Fig. 6.39 shows our findings concerning efficiency-centered
performance and we conclude that

f modSel
EMS . f modSel

LCF with f planSel
F/TE . f planSel

Fewer−M

is the best performing strategy over all three evaluation domains. It has been among the winners in UM Translog
as well as in CrissCross. All four finalist strategies that are depicted in the figure are most configuration-
specific (search) efficient and the edges represent stability and reliability domination results among them in
the three domains. Please note that the CrissCross domain did not induce any dominance between these can-
didates. It is interesting to see that only two plan selection functions prevail, namely the depth-first principle
and the smaller detection ratio preference f planSel

F/TE , a very abstract measure for the degree at which a plan
is flawed. Regarding the modification selection functions, the two key techniques are the conservative task
expansion as it is realized by the EMS and SHOP strategies and the HotZone computation. The combinations
built from these components do share a “careful” modus operandi in terms of abstract task expansion: the
two classical strategies preferably complete the causal plan structures before the next task is decomposed.
A similar effect emerges from the F/TE plan selection: Closing an open precondition or resolving a causal
threat lowers the ratio because it eliminates a flaw while maintaining the number of plan steps. Expansion,
however, typically raises the detection ratio because the method implementation inherits existing flaws from
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Primary plan selection Total Undom. e/s/r % EC RC
f planSel
First 9 8 6 2 60 1 1

f planSel
ConstrPlans−1 6 4 5 – 50 – –

f planSel
F/TE 30 20 18 4 47 3 3

f planSel
FewerModBHS 30 12 15 5 36 5 5

f planSel
FewerHZones 42 23 19 – 33 – –

f planSel
PSA+OCA 33 16 10 3 29 2 2

f planSel
ConstrPlans 6 2 2 – 22 – –

f planSel
LeastHZone 30 5 9 – 16 – –

f planSel
IndUniHS 30 2 10 – 13 – –

f planSel
Addr−FAbstrTask

−1 3 – – 1 11 – 1

f planSel
DirUniHS 30 2 7 – 10 – –

f planSel
CL+OCA 30 – 2 – 2 – –

Total: 279 94 103 15 25 11 12

Table 6.20: Primary plan selections over all three domains: Number of undominated system configura-
tion instances according to (e)fficiency, (s)tability, (r)eliability, efficiency-centered performance
(EC), and reliability-centered performance (RC). % stands for the ratio of possibly to factually
undominated.

the abstract task (except the flaw indicating the task being abstract) and the proportion of flaws to task ex-
pressions is relatively high for under-specified task networks in general. The main difference between EMS
and SHOP and the f planSel

F/TE combinations is that the depth-first classical strategies implement the deferral of
expansions path-wise and the flaw-oriented ones do so fringe-wise.
We are of course pleased that our advanced technology portfolio is able to perform domain-independently
competitive with respect to the well-established classical strategies EMS and SHOP.

Regarding the most configuration-specific (search) reliable strategies, we have to note that unfortunately
there are none. The intersection of the three respective sets of most domain-specific search reliable strategies
is empty. Although there are common components or switched primary and secondary selection functions,
the requirements of the domains with respect to reliability are apparently too different to be met by a single
individual of the given portfolio.

The analyses of primary plan selections (Tab. 6.4, 6.10, and 6.17) summarize the dominance results in the
three performance characteristics according to the deployed primary plan selection function. In each do-
main, the strategy population induces an average of number of dominance finding incidents, which defines
a domain-specific threshold above which a strategy may be called “assertive”. The intersection of the as-
sertive individuals of all three mentioned tables consists only of two primary plan selections: f planSel

ConstrPlans−1

and f planSel
First . For the sake of completeness, we also give the accumulated data as shown in Tab. 6.20, but

it has to be noted that these figures are easily misinterpreted without the context of the previous sections.
For example, the depth-first plan selection is at the prominent pole-position because it represents in fact
multiple, completely different strategies that alternate in performing extremely well on some of the prob-
lems.

Apart from these summarized categorical results, some individual strategies have to be discussed from the
domain-independent point of view.

With three successful ratings of the f planSel
PSA+OCA plan selection function, we are convinced that we have iden-

tified an appropriate incarnation of the A∗ principle in hybrid planning configurations. Future experiments
may investigate into better informed weights of the heuristic estimators, for example, a more precise ap-
proximation of the cost of an abstract task, but the performance is already convincing at this stage. Another
important property of PSA+OCA is its ability to collaborate with a great variety of supplementary strate-
gies.
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The least committing first principle is obviously a highly compatible component, too, because it is not
defined via plan features or flaw dependencies, and the like, but on the branching property of the search
space. f modSel

LCF may be deployed as a primary modification selection but is also a good choice as a secondary
heuristic. It is particularly effective in all situations in which no heuristic information is available, for
example, in phases in which too many too similar plans are in the fringe.

It is also a very satisfactory finding that our adaptive HotSpot selections f modSel
DirAdaptHS and f modSel

IndAdaptHS are
performing reasonably well in some domains, even with the given simple adaption approach. Further exper-
imentation will help to obtain an improved parameter adjustment for both, the initial values as well as the
adaptation procedure.

The performance of the SHOP strategy evidently relates to the presence of rigid facts and to the usage of
initial state facts over the course of action. Ordered task decomposition turns out to be adequate for Satellite
problems, in which many decisions directly depend on rigid state features that are sufficiently constrained.
For example, the expansion of the observation task relates the required image mode to a parameter in the
leading task for set-up procedure handling. This instrument activation is the head of the plan and selects
the appropriate constellation of instrument and satellite that is able to provide the required image mode.
These causal links are decisions safe from “backtracking” because the parametrization cannot fail at this
point. The contrary situation is given in the UM Translog domain: the first decomposition step merely
separates the loading procedure from the succeeding vehicle movement. At this point, there is no feedback
from the movement task which kind of transport has to be realized. The focus on loading is therefore not
sufficiently narrowing down the choices and it may turn out that necessary decisions in the movement tasks
invalidate the commitments made in the loading tasks. While the satellite observations can be planned from
the power-setup to the image taking, the transportation tasks have to be developed more opportunistically
back and forth. CrissCross combines the property of being not defined properly in execution order, it is
furthermore defined over flexible symbols only, and it is in addition hiding cross-wise causal interactions.
The latter however imposes such strong constraints on the subsequent plan that any backtracking is at least
initiated quickly.

But there is one more general issue with the depth-first strategies being so successful. Although all of
them are classical, well established search procedures, they are sometimes not too reliable because they
get lost in some solution-sparse ares. What helps them to gain performance is that they do not suffer from
the problem of monocultures: If the strategy does not focus properly on a solution path, then cliques of
sufficiently similar plans (depending on the selection schema) may populate the head of the fringe among
which the strategy has to choose randomly. This typically becomes a self-feeding process that resembles an
uninformed breadth-first search until either the experiment time is up or by chance all members of the clique
fail instantly.

Collecting empirical data on particular strategy combinations also provides insights into the effects of the
intended “job sharing” between plan and modification selection functions. The plan selection is evidently
primarily responsible for efficiency and reliability of the strategy combination, while modification selection
plays its major role in contributing stability. This phenomenon becomes in particular prominent in the rank
classification matrices of the UM Translog performance characteristics: the statistical metrics of efficiency
and reliability induce (plan selection) row patterns and stability induces (modification selection) column
patterns. For the other two domains, we have to consult the “raw” data tables, because the patterns are not
salient enough for the selection-wise aggregation; the plan-selection-oriented stripes are however noticeable
for efficiency (Tab. B.1/B.7) and reliability (Tab. B.3/B.9). The sample variance presentation shows the cor-
responding patterns if re-organized according to modification selection functions.

What we called job sharing can however only be sufficiently developed if the strategy is working in some
sense organized as a combination. This can be observed on the one hand in positive examples that com-
bine a very efficient plan selection with a very reliable modification selection (resulting in a very efficient
combination) and on the other hand in negative examples where two non-performing components come to-
gether to build an inefficient strategy. While in the first case an efficient search focus is sharpened by the
local refinement view, in the second case a remarkably inefficient search is worsened (as we have conjec-
tured in the strategy chapter, a sufficiently bad strategy is worth being tried out as an inversion). If however
the local information does not allow to infer any reasonable sort of quality for a particular refinement, the
modification selection function becomes blind, the selection process consequently random, and the plan
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selection function unsupported. We can observe this at wide range of strategies in the CrissCross domain
(see discussion in previous section). It has however to be noted that the missing modification selection
pattern is merely a symptom of such a domain model anomaly like the “loss of refinement quality”. It
may be compensated by heuristics that indirectly correspond to branching related measures: the expand-
then-make-sound principle is not only a way of describing conceptually how to develop a plan but it is
implicitly also a commitment schema. It obviously depends on the domain model, how many constraints
an expansion implies on consecutive plan refinements, how many make-sound alternatives are available on
average, and so on. In this way, a modification selection may constitute a domain-specific least commitment
strategy.

Concerning our performance characteristics, it turned out that although they are somehow semantically
related, their practical implications are different. While it is intuitive to associate efficiency with the concept
of availability of that efficiency, the stability characteristic does not seem to be that much connected to
the other two ones. Furthermore, we do find stability not as developed as the other characteristics and
it consequently appears in most analyses as to be of secondary character. This may be an effect of the
relatively small sample size but also of a (on some problems) too inefficient strategy population such that
we get trivial sample variance values of 0 if only one single run was successful or the value of “unsolved” if
the strategy dropped the problem completely.

The opposite experience can be made regarding reliability. This performance characteristic is considerably
more selective than stability and efficiency. We also observe that reliable strategies are practically never
inefficient or unstable, quite the contrary, the most reliable candidates turn out to be the most efficient as
well. Future evaluations may take advantage of this finding: We propose to focus on reliability-centered
performance evaluations in order to obtain more concise experimental setups and a more economic exper-
imentation. That means, we propose to begin with a reliability dominance analysis in one domain in order
to reduce all subsequent experiments and analyses on the most reliable subset of that reference domain. In
combination with (or instead of) this candidate reduction, we can also reduce the experimentation time as
well. The experimental frame can be successively adapted by taking into account the measured performance
of the reduced candidate set, in other words by adopting the reliability winners’ average efficiency as a new
cut-off for the successor experiments. By doing so, the efficiency of the most reliable strategies becomes the
bottom line for the population and unnecessary inefficient runs are aborted early.

While our abstract notion of performance supports an domain-independent interpretation of our results by
abstracting from the actual domain model, it is however not advisable to try to generalize the problem
difficulty analysis. It is of course valid, for example, to derive from the average failure rates that the Satellite
problems are regarded as more difficult than the CrissCross problems, which in turn are more difficult
than those of the UM Translog domain. However, when we start to refer to domain A as being more
difficult than domain B, the side condition “given the respective problem sets” must not be be left out
and hence makes no sense in practice. It is obviously meaningless to compare the effort of planning one
package transport with that of planning two satellite observations. Domain difficulty, or complexity, is
better addressed by classification techniques in terms of computational complexity (analytical reduction on
problems in specific classes of the polynomial hierarchy [133]), expressivity (transformational reduction in
terms of computational effort for problem translation [83]), and the like.

But we note that the evaluation subjects may as well be disjunct problem subsets, each of which repre-
senting a specific way of problem formulation, for example, specifying a package transport via an ab-
stract task versus a classical goal state feature. Or we may want to compare domain model variations,
for example, testing different decomposition methods for the UM Translog loading tasks. In these exam-
ples, the domain models are comparable and therefore a generalized problem difficulty analysis is worth-
while.

6.6.2 Lessons Learned

The previous sections describe many improvements that we have discovered while conducting the exper-
iments and analyzing the data. A key issue that always raises in this context is obviously the number
of experiments that are necessary to be able to draw valid conclusions from the studied material. When
we decided to conduct 5 runs per configuration (domain model, problem instance, and deployed strategy
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combination) we were well aware of the statistical problems that typically arise from such small sample
sizes. Practical considerations, however, compelled us to start with this reduced experimental frame size:
The above defined setup implies more than 15.000 recorded plan generation episodes, of which a total of
about

• 23% of UM Translog problems (cf. Tab. B.6),

• 72% of Satellite problems (cf. Tab. B.3), and

• 31% of CrissCross problems (cf. Tab. B.3)

failed to solve the posed problem instance, that means approximately 1.390 + 2.670 + 1.870 = 5.930 un-
successful system runs. As we have mentioned before, non-terminating runs are in most cases caused by
strategies that have lost their focus and explore the plan space stratum-wise like a breadth-first strategy. The
enormous fringe size slows the particular implementation of the evaluation system such that no known strat-
egy is able to re-gain its focus in time. The consequence is that practically all failures reached the temporal
deadline of 150 minutes. That means, the failed runs are worth about 5.930× 2,5h = 14.825h of compu-
tation time. Our evaluation software has been running on a cluster of up to 15 machines in parallel, the
total real-time consumed by the failed portion of the experiments alone was therefore about 6 weeks. The
remaining 600 plan generation episodes per cluster node are realistically solved within one week, including
all additional computations that are necessary to extract and process the experimental data. Regarding the
large failure rates and the tremendous time consumptions, it has also to be stressed that the participating
strategies and modules did not undergo any kind of heuristic fine tuning of parameters and alike, and that
all system incarnations performed a complete search (cf. Sec. 2.8.5). What we report are results that are
obtained by our reference implementations, which are still open to all kind of performance enhancements,
including run-time optimizations and the like.

After some initial data probing and time estimation in a precursor study [231], we decided with the given
time horizon and technical infrastructure to design our first empirical study in favor of a survey over some
segment of our strategy portfolio. With the hereby gained experience our consecutive experimentation will
be conducted statistically more accurately with larger sample sizes on more focused strategy and problem
sets.

One last remark on this topic: The credo of empirical research is of course that there is no such thing as
too much data, but the most important question that has to be solved is: are the acquired results statistically
significant? Although we have not performed dedicated significance analyses we can at least show that the
variance of values per problem is always greater than the variance within each strategy, that means that the
strategies actually make a difference in performance.

Another finding of our experiments, in particular a result of the mcp versus lcp analysis, is that evaluat-
ing strategies sometimes reveals more about the domain and problem in which the evaluation takes place.
We have inspected the anatomy of the search spaces and obtained some interesting results about the na-
ture of strategies but also about those properties of the respective problem or domain that constitute its
difficulty.

In particular the inspection of CrissCross problems is furthermore an example of how experimentation can
not only be used to determine suitable strategies for a given application domain but also for identifying mod-
eling anomalies and giving advice for debugging the respective domain model.

Last, but not least, the most important conclusion that can be drawn from this chapter is that there is a definite
need for (1) a highly configurable planning system as ours and (2) for conducting large scale experiments as
we did. The first becomes apparent when recalling, for instance, the discussion about preferring or rejecting
constrained plans during search. As it turned out, the choice highly depends on the application domain,
and the consequence is that a domain-independent planning system has to be sufficiently and adequately
adaptable to any domain. The second argument aims at the following: if we have an domain-independent
planning system at hand, how do we have to tailor it in order to meet the application domain’s needs? This
includes naturally the specification of an adequate domain model, but also the proper planning strategy in
order to obtain solutions efficiently, respectively reliable (the issue of finding efficient solutions has not
yet been addressed by this chapter). We have seen how focused an empirical evaluation can answer these
questions with the necessary statistical background.

280



6.6 Discussion

6.6.3 Related Empirical Evaluations

Planning and scheduling have always been applied technologies and therefore every new approach has been
naturally subject to experimentation and competition, partly in order to prove the utility of new functionality
and partly in order to prove the progress in terms of algorithmic quality. The latter can be interpreted as
improving the quality of solutions as well as improving the quality of service, for example, system response
time, tractable size of data, and the like.

An early example for such a performance evaluation is a documented comparison of the INTERPLAN planner
with representatives from the early 1970’s planning systems scene in terms of run-time [254]. Measuring
the real-time consumption of the plan generation process is, of course, a very imprecise method that does
not take into account multi-user environments, multi-threaded task processing, start-up and caching phe-
nomena like the Java Class loader, Garbage Collection, and so forth. It is also worth noting that the early
performance tests had the additional problem of a considerable diversity of used programming languages,
installed operating systems, and deployed computer hardware.

Most of the more recent experiments are conducted within the identical (or at least comparable) hard- and
software environment and are mostly targeted at comparing a new approach to its immediate predecessor
or at comparing design alternatives that share the same code base. This restriction relieves the researchers
of many practical and statistical issues and allows for a simple user CPU time15 measurement. However,
although this kind of analysis is documented for most approaches, it is in most cases intended merely to
provide selective evidence for the improvement of the new method.

Our understanding of evaluation also covers the aspects of an empirical study in the sense of gaining in-
sight into a matter by experiment and analysis. Positive examples are pieces of work about the idea of
least commitment planning and the proper quantification of the degree of commitment in the context of
the UCPOP system [113, 143, 218, 236], about the relationship between and application perspectives of
total-order and partial-order planning [16], and about the interactions of refinement strategies and corre-
lated algorithmic design decisions [148]. The central measure for these evaluations is the net running
time but in some cases also a more abstract scale like the number of explored search nodes, the average
branching factors induced by strategic decisions, and similar numbers that describe the shape of the search
space.

The International Planning Competition is currently the largest evaluation effort in the area of planning
[137, 171]. When first held at the 4th International Conference on Artificial Intelligence Planning Systems
in 1998, the IPC started out with five competitors that had to solve about 250 problems from seven domains,
organized in two tracks. Regarding the initially proposed evaluation method, the planning systems accumu-
lated a total score that they received by solving instances of the presented problem set. Such a single score
for a planning system i on a problem j was calculated as the product of i’s rank on j and the difficulty of j:
score(i, j) = (N j−Ri j)Wj where N j is the number of planning systems competing on j. The difficulty factor
Wj was thereby defined as the ratio of the median of system running times T on that particular problem j to
that of all problems: Wj = medianiTi j

∑m medianmTmn
.

In relation to our experiments, the early IPC evaluation approach has two methodological parallels: First,
the IPC also used ranking as a means for balancing diverse problem qualities, and secondly, the problem
difficulty weights W were induced by a performance measure of the competition participants. According
to the competition’s terminology, the ranking dimensions roughly correspond to our reliability-centered
performance evaluation. The planning systems were ranked for each problem firstly according to their
correctness, that means, whether they had constructed a valid solution to the problem, secondly according
to their need for “advice”, that means, the mount of problem-specific knowledge that had been given to the
planning system, and finally according to the product of consumed CPU time and a factor obtained from the
number of plan steps in the solution.

The precise calculation of the actual score has been a major debate for some time, in particular how to include
CPU time properly, how to devalue unsolved problems and incorrect solutions, and how to reward solution
quality. While the described compromise was aimed at balancing what we call efficiency and reliability

15The user CPU time is defined as the amount of time that corresponds to the CPU clock cycles that are spent executing user code.
This measure excludes implicitly called system kernel code, input delays, etc.
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(the main topic of discussion), one conceptual weakness was not addressed, namely the fact that problem
difficulty has been accounted for twice: explicitly in the difficulty weight and implicitly in the solution-
length factor of the runt-time ranking. We believe that this is a serious comparability issue when assigning
absolute scores to candidates. Over the years, the IPC evaluation schema therefore changed into its current
form of, in our terms, absolute reliability as it is formulated in its regulations:

“So, the only thing that matters is the number of solved problems. All problems (either hard
or easier) are considered equivalent. The winner of each category (sequential, temporal, net
benefit) is simply the planner that solves most of the problems.”

This in some sense more qualitative measure, which corresponds to our reliability characteristic, has been
used for some approaches in the past, for example [144], and is nowadays more commonly found in order
to maintain comparability, for instance [297].

From the technical point of view, our evaluation can be compared to the IPC as follows: The determinis-
tic section of the latest International Planning Competition, held in 2008, had 16 participants, which were
organized in four tracks, and an experimental frame consisting of more than thousand problems in 10 do-
mains. The time limit for each plan generation episode was 30 minutes and the memory limit 2GB on 3GHz
computers.
Our evaluation was conducted between late 2007 and beginning of 2008 and had 93 “participants”, single-
tracked, that competed on the basis of 5 samples of 34 problems in 3 domains. The quantity of domains and
problem instances is obviously an issue and (in particular the latter) needs to be extended. We restricted the
system to a time limit of 150 minutes and specified a maximum search space size of 5.000 nodes, which is in
practice equivalent to a memory consumption below 256MB. The deployed “compute servers” ranged from
single core 1GHz PCs to a 2GHz multiprocessor server. Having in mind that our reference implementation
code is not optimized, as we mentioned above, we think that our experimental frame imposes comparable
challenges to the evaluation candidates.

While the examination methods appear similar, the research focus of our empirical evaluation is however
different from the competition-oriented experiments in the IPC and the testing-intensive literature: we aim
at finding suitable candidates for developing “the best” strategy rather than selecting the best one from a
collection of alternatives. The subtle difference regarding the analysis techniques is that our evaluation is
always in favor of strategies that are not consistently expendable, in other words, that are undominated with
respect to a performance criterion, whereas typical competition schemata are interested in strategies that
dominate a set of competitors that is as large as possible. The former is a very conservative approach in
the context of strategy development and the latter is in particular valid if the candidate set represents all
currently available options. The difference becomes obvious if we think about changing our performance
schemata to change from undominated strategies to those which dominate most of the other strategies.
This hypothetical schema would systematically favour strategies that are specializations of bad strategies,
because chances are higher to consistently dominate a related strategy than a completely different one. For
this reason, we believe that our conservative approach, although not completely unproblematic, is better
suited for development purposes.

Another very important difference is that our approach is not intended to deliver one single judgement or
winner but rather to provide a set of techniques that support constructing, respectively assembling a proper
strategy component in an application-suited system configuration. This is accounted for by proposing a
set of complementary evaluation methods that cover a variety of perspectives on the examined strategies
and problem instances. We believe that our approach allows for a considerably more efficient tailoring of
the evaluation to the needs of the target application(s). The “single/absolute winner” scenario of a com-
petition is not only controversial with respect to the (fusion of) performance criteria but also problematic
concerning the suggested generality of the results. The latter have been obtained from few example do-
mains, which “have peculiarities that induce a bias towards certain kinds of plans. It can not be ruled out
that the picture would be very different over a different problem set, in particular over a set of ‘real’ prob-
lems” [130].
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6.6.4 Perspective

As it is quite common to empirical studies, our evaluation did not answer all our questions definitely and at
the same time raised new interesting questions for which a dedicated experimentation would be required. A
recurring theme in this chapter is consequently the need for “more experimentation”, which we will satisfy
as part of our future work specifically as follows:

Statistical Accuracy

A recurring open issue in this chapter is that of statistical accuracy given the relative low sample size of five
runs per configuration. With our subsequent studies being more focused we will be able to invest more time
and computational resources into the individual candidates so that a doubling of runs can be realized. The
question is of course: will ten runs be enough?

We cannot answer this question yet, because we do not know enough about the amount of indeterminism
that occurs in the individual plan generation episodes. It is however very unlikely that we will obtain precise
data by analytical means except for the most trivial (and uninteresting) cases of strategy design. But we
have seen for some of our strategies what the induced search trees look like and discussed to some extent
the respective decisions of the involved plan and modification selection functions. Consequently, what we
need in future experiments is a precise recording and preprocessing of the corresponding selection results,
that means in particular data about the number and type of options that end up in the same equivalence
classes after the last selection function call of the strategy. From that data we will get at least an idea
of how representative the individual runs probably are and are consequently able to infer suitable sample
sizes.

Until then, we will begin with the doubled sample size of ten, because we believe that this gives justice to
the majority of strategies while at the same time being a tractable effort.

Generality of Results

Given the various single results that we have obtained and assuming that we manage to obtain a sufficient
statistical accuracy as described above, we will have to address the problem of how to generalize from our
findings. Since generalization of experimental data is mostly concerned with identifying possible explana-
tions for a set of observations (abduction), we will have to extend that set of observations quantitatively and
qualitatively as much as possible, that means, we will have to include more problems and domain models in
our analyses.

As an initial step, we will translate more of the IPC domains and problems and transform them into hybrid
representations, if that appears reasonable. Furthermore, it will become necessary to provide instances of
certain patterns in terms of domain and problem regularities, for example, the concepts of repetitive and
diverse problems as we find them in the CrissCross domain, and the like. This includes also alternative
realizations of the same domain, for instance, different ways of task hierarchization, alternative task specifi-
cations, or modeling variants with respect to sort versus resource definitions.

Our ultimate long-term research goal is a generalization of our findings from the deployed strategies and
from the concrete domain models and problem instances: We want to identify model- and problem-related
key properties that allow to infer from a given application situation which kind of strategy combination
is most probably suitable, that means efficient, reliable, etc. This effort ideally leads to a mapping of
application features to search strategies in analogy to the classification results in the area of scheduling [37];
we expect at least to gain enough insight into our strategy portfolio to be able to formulate more precise
deployment guidelines.

283



6 Empirical Evaluation

Focused Research Questions

But we also have to take into account that generalization is always a result of the research question that has
been formulated in the beginning of the experiments (cf. Def. 6.6), for example, in the IPC “which planner
solves most of the problems?”. For the competition’s purpose it appears imperative to include an arbitrary
wide range of diverse domains and problems the best planners should be able to solve. Although we agree to
some extent with this greedy point of view, because it aims at systematically excluding any bias, we are also
aware of the fact that this attempt is conceptually questionable: Ultimately, if literally every domain model
and problem characteristic is included in the test set, a “best performance” evaluation result will become
insignificant because there will be arbitrarily many specialized strategies none of which will be comparable
to each other (given that the conjecture about the polynomial hierarchy holds and consequently any strategy
will only be able to solve a specific portion of the possible problem spectrum).

We think that these considerations have two consequences: first of all, we will definitely build more problems
and domain models with various properties, but we do have consider carefully which of them actually
contribute to the research question. Secondly, we have to spend some effort on establishing worthwhile
research questions that are sufficiently focused, which in turn will help us to define the representative domain
and problem coverage. We will begin with the numerous open issues that are contained in the sections above;
there will be sets of extended experiments with larger sample sizes, more problems, and more selectively
chosen strategies.

The problem of the reduced dominance occurrence is of course a statistical phenomenon that will become
even more apparent the larger our planning problem sets will become. The more problem instances are
solved, the larger is the probability for an exceptionally good or bad run, which in turn implies a larger
probability for finding a single result that contradicts a case of dominance. As a consequence, the set
of undominated strategies will grow and with it the set of “winning strategies” as well. We will have to
reconsider this issue on the basis of more available data. One possibility is to introduce k-dominance, that
means, a strategy a dominates some other strategy b if and only if a is better performing (more efficient, etc.)
than b except for at most k occurrences and b is not dominating a. We will have to analyze this dominance
schema in future evaluations, but from our experience in the reported experimentation, k-dominance is even
for k = 1 considerably more restrictive.

New Experimental Setups

In the reported experiments not all components participate that our strategy portfolio provides. It is therefore
our primary aim to include some combinations with potential in a follow-up study in order to complete
this chapter’s findings. This also includes specific experiments with the adaptive HotSpot modification
selection functions and other prototypical strategies that employ learning techniques: due to methodological
restrictions, the adaptive strategies were required to set back their weights before each run to their initial
value. We are planning to design experimental setups that are particularly tailored at addressing questions in
the context of measuring the success of learning and similar dimensions. To this end, we have to modify the
experimental platform such that a progression of problems can be specified (from which problems to learn
and to which problems apply the learned knowledge) as well as consistent access to the strategies’ memories
is provided (taking into account a multi-server setting).

Another important aspect of future developments is to take into consideration parameters that are beyond
the anatomy of the search space, namely quality aspects of the produced solutions. This is apparently more
of an issue for resource-aware system configurations but the concept of optimization can also be applied to
hybrid planning: the choice of an expansion method may affect the number of plan steps that are necessary
to achieve a certain goal, plan steps may be added for establishing a goal which could have been met by
a specific task implementation elsewhere, and the like. Furthermore, the current results are restricted to
problems that are solvable by HTN-only systems in order to meet literature’s standards on common ground.
Future experiments will address the option of task insertion as well, which will challenge the strategies to
add new plan steps on demand or to try to achieve the same effect by suitable decompositions. In all these
experimental settings that allow for a more diverse plan quality, when one such solution quality has been
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studied, these findings can be integrated and related to other qualities, for example, investigating into the
relationship between cost optimal plans and the efficiency of their construction.

As we have noted before, we will not be realistically able to evaluate a larger portion of the space of strategy
combination candidates by following a naive, systematic approach. Taking into account our experiences in
planning strategy design, we have confidence in machine learning techniques being an appropriate means
for systematically isolating suitable evaluation candidates in a pre-evaluation phase in order to define the
experimental setup for a tractable amount of evaluation runs.

Our next step in this direction will therefore be to investigate into post-mortem analyses of complete plan
space traversals, similar to the computations we suggest for increasing statistical accuracy. We will use
them to evaluate the respective strategy components in a re-play fashion, similar to learning control rules
for the PRODIGY system from system traces [35, 274]. We begin with unary primary selection functions,
reproduce their selection behaviour in the prepared search space, and use statistical estimators to quantify
their characteristics like the number of plans visited or the induced branching factors. These numbers are
the basis for a candidate assembly component that systematically adds subsequent strategy components and
feeds them back into the evaluation procedure if any improvement has been be gained. The rationale is to
provide a computationally cheap way of determining the “average case” performance of the components,
which is in turn be used to build effective sets of combinations.

Apart from serving as a pre-experiment filtering technique, the described simulation approach is a possible
way of mechanizing (some of) the presented evaluation methods and realizing an automated strategy de-
ployment support in a newly developed planning application for which no experiences concerning system
performance exist.

In this context, it also becomes increasingly important to establish a more formal theory of compatibility
of strategy components. When we will have developed a better understanding of the analytical processes
of assessing quantitative strategy component characteristics, we will be able to define more precisely the
concept of synergy in strategy combinations. We also believe that such a quantification of compatibility
significantly contributes to our insights into strategy mechanisms, practically enhances the predictive power
of the simulation/recombination approach above, and, last but not least, stimulates research into new strate-
gies.

As a last topic, hybrid planning is only one system configuration amongst many. While our results can
be expected to be easily transferable to pure HTN or POCL planning, there is no prospect of their ap-
plicability to scheduling or hybrid resource planning configurations. In absence of a suitable established
methodology, we will in a first step repeat our experiments on resource-intense domains and problems; it
will be an important part of our future research to define the appropriate experimental setups and evaluation
measures.

6.7 Summary and Conclusion

This chapter has presented an empirical evaluation of strategy performance that we have conducted in our
planning framework. We have given a precise definition for the concept of “performance” and accordingly
formulated a set of research questions for guiding our experiments. By doing so we did not only motivate
the study design but we could also demonstrate the bandwidth of issues that are addressable by means of
experimentation in our proposed planning framework. We would like to point out that this includes two
aspects, namely that our approach is not only a flexible framework for building a variety of planning sys-
tems and strategies but that it is also for conducting empirical evaluations at a larger scale. By adopting
this view, the PANDA framework becomes a tool for identifying suitable system configurations systemat-
ically. It is also worth mentioning that the experimentation is not restricted to strategy components but
open to all imaginable variations and alterations of the system configuration, domain models, and plan-
ning problems. For example, we may as well investigate into alternative modification generating modules
that incorporate domain-specific knowledge. This flexibility in experimentation is a unique feature of our
approach.
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We have detailed our evaluation methods and interpreted the results with respect to the individual domain
models as well as from a more consolidated domain-independent perspective. Our conclusive findings
are, first of all, that empirical methods are key techniques for understanding many strategy mechanisms
in general and in particular the interactions between planning systems and the respective problems and
domains. Since we aimed at providing advice for the identification of an appropriate strategy for a given
planning application, this result is, of course, less surprising, the evidence for the conjecture is however
properly documented above. As our experiments have shown, predicting the performance of a strategy is
extremely hard and often impossible, for example, the preference of constrained plans and its inversion take
turns at being successful from domain to domain; it is therefore not only possible to evaluate a configuration,
but also necessary.

The second major result is that our portfolio provides a rich assortment of search strategies, in particular from
our novel flexible strategy classes, which have interesting properties: The HotSpot and HotZone concepts
utilize flaw and modification relationships in an opportunistic and apparently fruitful way. Our hybrid-
planning A∗ plan selection is a successful example for taking into account POCL and HTN concepts in
a seamlessly integrated manner. Both types of strategies can furthermore be easily combined with other
components which makes them very valuable assets for our framework.

The last more general conclusion we can draw from our experiments is concerning the “by-products” of
the evaluation procedure. We found out that basically all our results give evidence to the fact that hybrid
planning as such is much more than a partial-order methodology with a “cheating” method to pump plan
steps into a plan easily. This became particularly apparent when we examined the influence of the deci-
sions concerning the treatment of decomposition plan-modifications. Furthermore, we became aware of
the fact that experimental studies on planning systems also contribute to our understanding of the involved
domain models and problems. This is because, on the one hand, we build hypotheses when observing the
behaviour of search algorithms during the problem processing, on the other hand, these hypotheses may not
be completely confirmed by subsequent experiments, which in turn initiates a very focused examination of
the situation. These are naturally and very probably effects of problem characteristics the researcher was not
aware of before.
It has to be noted that incidental findings of this kind in general have to be considered carefully, because
the study may have an implicit bias concerning facts outside its design scope. In our research ques-
tions, however, the simple difficulty classification for planning problems has been included from the be-
ginning.

We have also discussed our findings in terms of related work and future perspectives. It is important to note
that a direct comparison between our results and related experiments in the original literature is neither in-
tended nor adequate for several reasons: The referenced evaluations typically had a different research focus,
worked on different domains, examined different plan generation paradigms, and operated on their specific
system implementations. This is in particular the case for the SHOP system, which has been “realized” in
our framework by lifting it to a purely declarative level. The classical strategies, as well as our findings
regarding the least commitment principle, have rather to be viewed as representatives of specific search
schemata.

This section concludes our evaluation chapter in which we have presented for the first time a systematic
empirical study concerning strategies for hybrid planning. We have shown in an illustrative set of experi-
ments how candidates for an adequate strategic component in a hybrid planning system can be identified.
The application of these results is finally a methodology for compiling instances of our planning framework
in an application-oriented (and possibly automated) way.
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THE previous chapters have presented the formal basis (Chap. 2) and the conceptual means (Chap. 3)
of a planning framework that is on the one hand capable of integrating various planning methods in
a coherent manner and that allows on the other hand to design and deploy novel planning strategies

(Chap. 4) that effectively control these planning methods. We have also examined some relevant aspects of
fielding a planning and scheduling system: We discussed the architectural issues that arise in a productive
software environment and presented some representative domain models and their particularities with respect
to hybrid planning (Chap. 5). The technical details have been rounded up by an empirical evaluation in
which we have tested a collection of our strategies in use (Chap. 6). Each chapter has presented its specific
conclusions and scientific perspective.

It is the duty of this concluding chapter to give a summary of our contributions, in particular in the light of the
research agenda that we have proposed in the introductory chapter as a touchstone for our scientific results.
The following sections will therefore briefly discuss each agenda item with regard to our achievements as
well as suggest future developments that may build on our work.

7.1 Summary of Contributions

7.1.1 A Formal Framework for Planning and Scheduling

In Chapter 2 we have defined the formal semantics for all constituents of a domain model, in particular
for plans and their components. Our approach is thereby the first formal treatment of purely declara-
tive hierarchical domain models such that abstract actions are given a proper meaning in terms of con-
crete plans. On the one hand, this gives us the means to implement a sound hybrid hierarchical approach
(see Section 7.1.2) and on the other hand, it provides a well-founded universal notion of model consis-
tency.

On the basis of our model semantics, we understand planning problems as abstract, underspecified sketches
of intended courses of action and accordingly solution plans as implementations of these sketches. The pro-
cess of plan generation has been consequently realized as a formally well-founded method of transforming
abstract plans into concrete solution plans in a specification-preserving manner. This technique is called
refinement planning and we formulated a generic planning algorithm that uses it to systematically explore
the space of possible refinements that is induced by an abstract problem in order to locate a concrete solu-
tion.

One novelty of our formal approach to refinement-planning lies in an explicit specification of refinement op-
erators, called plan modifications. Any such operator that complies with the corresponding soundness con-
ditions is thereby guaranteed to consistently constrain the implementation candidates of a given plan. This
has two important implications: First, any type of plan refinement can be realized within the framework and
safely integrated into the the algorithm, which contributes to the topics of Section7.1.3. Second, the refine-
ment operators become examinable for strategic purposes or retrospect explanations.

Another unique feature of our work is to represent also plan deficiencies explicitly. We introduced flaws that
identify the concrete cause for a plan to fail the solution criteria, that means, we categorize the problem and
mark the affected plan components. Like for the plan modifications, flaws are provided with a concept of
soundness such that any type of solution criterion can be realized at any level of detail. Consequently, flaws
can be operationalized in a generic solution test as well as in more sophisticated analyses of plan defects. In
this way, they are the basis for novel planning strategies (see Section 7.1.4).
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Explicitly represented flaws and plan modifications are suitable means for describing the refinement plan-
ning procedure, but they are more than that: they can actually make a generic refinement planning algorithm
operational. Based on the correlation between deficiency characteristics and the effects of refinement op-
erators, we have proposed a triggering function that explicitly interprets the occurrence of certain flaws as
justification for the application of certain plan modifications. Deployed in our generic algorithm, the trigger-
ing function induces a control flow that adapts to any constellation of supported flaw and plan modification
classes. Chapter 3 and Section 5.1 proved this formal framework to be a resilient foundation that provides
effective mechanisms for a component-based configuration and implementation of planning and scheduling
functionality (see Section 7.1.5).

7.1.2 Integration of Hierarchical and Non-Hierarchical Methods

Chapter 2 presented the concept of abstraction as an integral part of our formal framework. It did so in two
aspects: First, our approach makes use of decomposition methods, similar to those invented in hierarchical
task-network (HTN) planning but with more elaborate semantics. In this view, a consistent decomposition
method has to relate an abstract action to a partial-order plan such that the plan represents a valid, concrete
implementation of the state transition that is specified by the abstract action. This mechanism is, secondly,
accompanied by state-abstraction axioms, which are essentially a well-founded way of refining abstract
state descriptions into more concrete state features.

The combination of these two forms of abstraction allows us to capture domain models that combine the
expressiveness of procedural knowledge as in HTN planning with the causality-centered state-based view of
partial-order planning – and it allows us to do so very elegantly. Section 5.2 detailed some example domains
and discussed their particularities. Concerning the operational aspects of our approach, the integration of
the two abstraction mechanisms realizes for the first time a semantically safe, hence seamless merge of
hierarchical and non-hierarchical plan refinements. The hybrid system configurations that we described in
Chapter 3 provide the corresponding flaw detection and plan modification generating components, thereby
turning our generic refinement algorithm into a system that constructs plans in the tradition of partial-order
planning and HTN planning likewise. This means in particular that the hybrid system does not need to
deploy any fixed procedure with respect to synchronizing the abstraction levels in a plan, it may freely choose
from the available development options. The decomposition semantics and state refinements guarantee that
causality can be traced across multiple levels of abstraction.

7.1.3 Integration of Planning and Scheduling

On the basis of the formal framework in Chapter 2, and in particular of the therein defined term manip-
ulation semantics, we have developed a collection of plan refinements for the well-founded manipulation
of temporal and resource information. With the derived plan deficiencies and refinement operators, Chap-
ter 3 proposed the essential generator components that implement the corresponding reasoning capabilities,
thereby setting up system configurations that realize scheduling functionality. Our flaw and plan modifica-
tion concept provides the semantic basis for a well-defined modularization as well as the technical means for
an appropriate control flow; our generic refinement algorithm is therefore able to operate such that “plan-
ning” and “scheduling” plan modifications may interleave arbitrarily and consequently the correlated flaws
can be addressed in an opportunistic fashion. Thus, we succeeded in completely integrating both technolo-
gies on the operational level.

Our work also contributed substantially to a unified representation of domain models for hybrid planning
and scheduling. Incorporating temporal phenomena and resources into our semantics of state and action
abstraction creates two innovations: For the first time, decomposition-based planning has been provided with
clear semantics concerning duration and resource manipulation on the abstract action level. The correlated
notion of consistency becomes universally applicable and therefore supports both constructing meaningful
domain models and well-founded reasoning on these models. The second innovation lies in providing
resource representations with a semantic dimension of abstraction. Our formal framework captures novel
concepts like resource aggregation or explicit approximation, and we presented examples for the application
potential of this novel hierarchical scheduling approach.
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7.1.4 Flexible Planning Strategies

The above integration efforts focus on a common basis for constructing the space of possible refinements
as it is provided by our framework in Chapter 2. The problem of actually navigating through that space
in search of a solution is addressed in the generic refinement algorithm by an explicit search strategy that
works in two steps: a local-scope strategic function that examines the refinement options for given plan and
a global-scope search control that manages the plans that are under examination and that chooses the route
through the refinement space.

These two components cooperatively direct the system as follows: Any plan that is not yet a solution is
assigned flaws in order to name the deficiencies. This induces, via the triggering function, the construction
of plan modifications in response to solve those defects, if possible. After that, as the first step of strategic
reasoning, the modification selection function chooses which of the proposed refinement operators to apply,
thereby deciding which of the possible refinements within the huge search space are to be instantiated.
This choice can be made directly by prioritizing refinement classes or indirectly according to a preference
of flaws that shall be eliminated earliest. The explicit representation of flaws and modifications, however,
makes much more information available, including the relationships between the deficiencies, their resolving
refinements, and the components of the plan to which both refer. As we have shown in Chapter 4, this kind
of structural evidence can be effectively used for a heuristic assessment of the plan development status and
thereby employed in a novel class of flexible, opportunistic strategies.

The newly created refinements are processed by the flaw and modification generators and then enqueued into
the line-up of available solution candidates, the fringe of the explored search space. From there, a second
strategic element chooses the plan that is to be processed next. This plan selection function can be realized
as a classical search heuristic but also as a novel flexible one that utilizes the additional information about
the deficiencies and refinement submissions for the fringe members.

Chapter 4 developed a broad portfolio of modification and plan-related strategy components that ranges
from classical selection schemata to flexible heuristics. In particular the latter are configuration indepen-
dent strategies and can therefore in particular be deployed in hybrid planning configurations as well as in
system instances that perform scheduling operations. We furthermore designed the components such that
modification and plan selection functions can be assembled, respectively, into more complex and powerful
arrangements. We demonstrated in an evaluation in Chapter 6 that our novel strategic concepts are both ele-
gant, modular specifications and adequate search controllers for hybrid planning.

7.1.5 An Effective Software Platform

Based on the generic refinement-planning algorithm in Chapter 2 we developed an open software architec-
ture for the implementation of the system configuration concept that has been presented in Chapter 3. The
highly modular nature of the configuration components is thereby emphasized by realizing them as a multi-
agent system, which optimally supports the notion of concurrency during the parallel computations of flaws
and modifications as well as the notion of distributed knowledge. While the former addresses the practical
issue of manging multiple computational resources the latter matches nicely the idea of different modules
representing different planning and scheduling aspects. In order to improve the non-functional performance
features, the whole architecture is realized within a so-called application server, a standardized environment
for deploying large-scale distributed business software systems. Section 5.1 explained the design issues and
detailed the main software components.

Apart from these more technical implementation aspects, we were also able to enhance our planning frame-
work conceptually by employing techniques that originate in the “Semantic Web” community. We trans-
lated some of our semantic concepts into an established ontology language, including the representations
for flaws, modifications, and related system components. On this basis, the software platform is able deduce
the concrete triggering relation of a planning system configuration from a high-level specification of the
deployed agent modules and to install the effective data and control flow automatically. Furthermore, the
declarative ontology language is expressive enough to capture all functional aspects of the platform, is an
appropriate interchange format for many existing modeling tools and reasoning systems, and allows system
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configurations to be verified for completeness or plausibility. The knowledge-based techniques perfectly
convey the flexibility of the conceptual framework to a software environment.

Chapter 6 showed by conducting a large-scale empirical evaluation that such an implementation of our for-
mal framework follows up on our promise to provide a software platform that supports building planning and
scheduling systems in a plug-and-play fashion as well as it is able to serve as an effective experimental plat-
form for planning and scheduling research. The proposed framework is thereby primarily targeted at identi-
fying a suitable configuration for a given application domain such that the result can be compiled afterwards
into the “real” productive system. The experiments have however shown that it is performing surprisingly
well for being a research prototype and the compilation effort should therefore be not too big. In this sense,
our work narrows the gap between the academic result and a practical application.

7.2 Future Work

Throughout this thesis, we gave suggestions for improvements, possible extensions, and future research. At
the very end of the concluding chapter, we want to give a review of the general topics that may originate
from our work and that we consider worthwhile to investigate.

7.2.1 Advanced Plan Generation Concepts

Hybrid Scheduling: As we have pointed out in the conclusions sections above, this work is focused on
the representational side of integrating planning and scheduling, that means, a common domain model rep-
resentation and a common operational framework. Future research will have to address the optimization
aspects that come with resource reasoning. This implies in particular the specification of objective func-
tions and the design of strategies that achieve the desired plan quality. The main open questions in this
context will be how to guarantee some level of optimality on the basis of the existing strategy portfolio
and how our abstraction mechanisms can be applied to objective functions. Based on our results in re-
source abstraction types, we believe that this may lead to novel concepts of specifying and measuring plan
quality.

Planning under Uncertainty: Notwithstanding all advances of representation features, it is a key issue
in all practical applications that they include a certain amount of uncertain knowledge. Our approach will
definitely be extended in order to address the problem of uncertainty either directly or indirectly and it
provides the prerequisites for both kinds of developments.

We understand direct uncertainty management as those techniques that anticipate unexpected events and take
this into consideration in the plan generation process by prediction or preparation. One form of uncertainty
prediction is employing a probabilistic model of the execution environment. The precise mathematical
model of some state features’ variability allows for effectively estimating the probability for a successful
plan execution. It is also a nice property of that approach that the integration of probability distributions
matches our notion of task abstraction such that the prediction of uncertain facts becomes traceably less
precise on the more abstract action levels. Another important feature is that distribution parameters can
be verified and iteratively updated during execution. We have shown this kind of uncertainty handling
previously at an earlier stage of this work [24, 25]. Addressing uncertainty by preparation, that means,
the integration of conditional plan steps and loop constructs is another interesting direction. Contingency
planning has been successfully realized for non-hierarchical approaches, it would therefore be a worthwhile
effort to investigate into extending the formal framework accordingly.

An indirect uncertainty management does not anticipate events beyond the precise environment specifica-
tion and therefore has to react if the unexpected occurs. A conceptually simple extension of our framework
would be to incorporate it into a continuous planning system, that means, a system that continuously updates
a current solution and that produces recovery plans if the previous course of action fails. A more sophisti-
cated technique is that of plan repair, which analyzes the circumstances that led to an execution problem and
modifies the failed plan accordingly. Two points make plan repair an interesting perspective for our work:
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First, repairing a plan is inherently connected with the notion of reusing it, that means that search effort is
saved and the commitments a user had made to follow that plan are preserved as much as possible. Second,
our explicit representation of flaws and plan modifications allows for a formally well-founded as well as
efficient plan repair. We have given in [21] a prototypical repair procedure that is based on our framework:
In a first phase, the failed portion of the plan induces a retraction of those plan modifications that contributed
to the failure. The second phase operates on the assumption that all decisions that led to the previously failed
solution but that did not contribute to the failure are still worthwhile options to find a new solution efficiently.
The referenced paper describes in detail how the adaptive strategy is designed and what mechanisms guar-
antee that the new solution, the repaired plan, is not affected by the previous failure situation. It is important
to note that repair functionality can be realized via additional flaw and plan modification definitions and a
flexible strategy; it is therefore perfectly implementable in our framework.

7.2.2 Mixed Initiative Planning

This thesis developed a planning framework for automated planning and scheduling, that means, the in-
stantiated system configurations solve a given problem specification automatically without further user in-
tervention. We believe however, that the area of mixed initiative planning, which involves the human user
in the plan generation process, is also a topic that we should to address in future work. The rationale for
this approach is to create a synergy between the data processing capabilities of automated systems and the
strategic reasoning competences of human beings. As a side-effect, the acceptance of planning technology
by non-expert users increases.

We have developed evaluation prototypes in several smaller projects that act as mediators between the pre-
sented planning framework and user interfaces. Thanks to our explicit representations, it was possible to
build abstraction layers for displaying, explaining, and interacting with flaws and plan modifications. The
human user thereby acts as strategic advice for a semi-automated system that is concerned with propagat-
ing the user decisions, arranging the plan details, and giving feedback about the expected solution qual-
ity [114].

It is worth pointing out that a mixed initiative approach in addition substantially benefits from two fun-
damental design decisions: Our refinement planning framework operates on the plan space, that means
that any intermediate solution candidate is a partial plan that can be communicated to the user, interpreted,
and also directly compared to other plans. Navigating through the space of refinements corresponds to a
human-comprehensible manipulation of the plan data structure. Hence, the progress of search can be di-
rectly followed and does not require per se further techniques beyond the abstraction of details. The second
user-relevant design feature is the adoption of abstraction techniques in the planning formalism. The uni-
versal treatment of state and action abstraction can be directly applied to user interfaces in term of data
representation as well as in terms of interaction mechanisms. We think that one promising direction of fu-
ture research lies in identifying suitable abstractions for communicating plans and their refinement options.
On this basis, we will be able to develop techniques for a system-supported explanation of causal structures
and plan generation alternatives.

Further research into mixed initiative planning will enable our approach to present itself in a less technical,
hence more end-user oriented way, thereby making planning technology substantially more accessible to
domain-experts.

7.2.3 Construction of Consistent Domain Models and
Problems

Consistency is a recurring topic throughout this thesis and an extremely relevant one with respect to practical
applications. While it is obvious that an inconsistent domain model makes any planning approach worthless,
the effort of creating a consistent one is however widely underestimated. The same holds for problem
specifications, which the literature is only able to categorize into solvable and unsolvable ones; for practical
purposes, not solving a problem is never an option, because the product just has to be delivered, a procedure
has to be carried out, and so on.
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Our work addressed these issue from the perspective of the formal semantics of our planning method-
ology and formulated consistency properties accordingly. A desirable future development is to investi-
gate into mechanizing these consistency criteria such that adequate tool support for domain modelling can
be established. We implemented a first prototype of such an editor (shown, for example, in Fig. 5.7)
and had the experience that even the simplest background checks of consistency constitute a valuable
aid.

Future work in this direction has also to take into account the aspects of the actual construction process.
This includes the adaptation of a suitable knowledge engineering method and the identification of con-
crete support measures for the incremental nature of model construction. The former means establishing
consistency by construction, the latter suggesting model adjustments in order to maintain or re-establish
consistency.

Last but not least, tracking anomalies is also an interesting area that has not been addressed yet. At the
moment, evaluating the adequacy of a domain model is limited to testing in the sense that the obtained so-
lutions are analyzed off-line and compared to the, probably implicit, expectations. We believe that many
of the “best practices” for domain models and problem specifications can be formalized as quality metrics
and incorporated in a tool that, in analogy to programming tools, constitutes a model development environ-
ment.
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A Weights In The Adaptive HotSpot Strategy

The following weights are examples for the user-defined weights in the adaptive HotSpot strategy as they
have been used in our experiments with the hybrid planning configuration (cf. p. 167ff, strategy (4.27)). The
provided comment sections have to be seen against the background of the respective flaw and modification
combinations. Please note that a weight-value of 1.0 is the neutral factor, smaller values mean to prefer
input flaw class A, greater values imply to favour input flaw class B.

Flaw Class A Flaw Class B Value Comment
Threat Threat 1.0 Fellow threats treated symmetrically.

AbstrTask 1.5 Expansion offers additional threat resolution op-
tions.

OpenPrec 0.5 Threat resolution changes linkability situation.
OpenVarBind 1.0 Flaws treated symmetrically.
UnordTask 0.25 Threat condsidered more crucial; may cause pro-

motion or demotion.
AbstrTask Threat 0.5

AbstrTask 1.0
OpenPrec 0.5 Expansion changes linkability situation; closing

precondition potentially pre-mature.
OpenVarBind 1.0 Flaws treated symmetrically.
UnordTask 1.0 Flaws treated symmetrical.

OpenPrec Threat 1.5
AbstrTask 1.5
OpenPrec 1.0
OpenVarBind 0.5 Implicit parameter binding imposes useful con-

straints.
UnordTask 0.5 Linking eventually implies ordering.

OpenVarBind Threat 1.0
AbstrTask 1.0
OpenPrec 1.5
OpenVarBind 2.0 Overlapping constraint manipulations considered

harmful.
UnordTask 1.0 Flaws treated symmetrical.

UnordTask Threat 2.0 Threat handling usually better informed about
suitable ordering.

AbstrTask 1.0
OpenPrec 1.5
OpenVarBind 1.0
UnordTask 1.0
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B Empirical Evaluation – Data

The cell colour in the data tables on the following pages encodes the problem-related performance: Blue
values lie in the first quartile, beige coloured values are between first quartile and median, and red values
are above the third quartile or 100% failure runs.
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B Empirical Evaluation – Data

Problem

ModSel PlanSel 1o-1s-1m 2o-1s-1m 2o-2s-1m 2o-2s-2m 3o-1s-1m 3o-2s-3m 3o-3s-1m 3o-3s-3m

ems_lcf cloca 70

hz_lcf cloca 65 1990

lcf_da cloca 63 2287

lcf_du cloca 78 2767

lcf_ems cloca 81 2741

lcf_hz cloca 65 2210

lcf_ia cloca 62 2039

lcf_iu cloca 63 2359

lcf_mod cloca 87 2916

lcf_pExp cloca 80 2822

ems df 34 864 809 800

shop df 50 758 237 4194 3715

umcp df 50 1535 2403 1500

ems_lcf du_fmf 31 582 683

hz_lcf du_fmf 37 3581 1300 1073

lcf_da du_fmf 39 453

lcf_du du_fmf 43 2162

lcf_ems du_fmf 45 3652 3895

lcf_hz du_fmf 37 2076

lcf_ia du_fmf 33 716

lcf_iu du_fmf 39 453

lcf_mod du_fmf 46 944

lcf_pExp du_fmf 43 1924

umcp ff(ct) 65 600 1495

ems_lcf fhz_fmf 77 841 502 873

hz_lcf fhz_fmf 61 1256 3954

lcf_da fhz_fmf 62 966 565

lcf_du fhz_fmf 78 1354 1989

lcf_ems fhz_fmf 70 1475 2512

lcf_hz fhz_fmf 60 1197

lcf_ia fhz_fmf 59 1151 349 4019

lcf_iu fhz_fmf 57 1410

lcf_mod fhz_fmf 84 1569

lcf_pExp fhz_fmf 79 1512 3267

hz_lcf_iu fhz_lcp 60 884 3397

hz_lcf fhz_lcp_fmf 59 1052 5026

hz_lcf_iu fhz_mcp 58 1251 3265

hz_lcf fhz_mcp_fmf 58 1603

ems_lcf fmh_fmf 32 679 2019 2322

hz_lcf fmh_fmf 38 400

lcf_da fmh_fmf 39 596 175 1256

lcf_du fmh_fmf 62 1051 824

lcf_ems fmh_fmf 63 879

lcf_hz fmh_fmf 42 699

lcf_ia fmh_fmf 35 639 144 5182 1328

lcf_iu fmh_fmf 38 635

lcf_mod fmh_fmf 67 1075

lcf_pExp fmh_fmf 54 829 1317 1273

ems_lcf iu_fmf 31 1856 1112

hz_lcf iu_fmf 38 4658 4215 1388

lcf_da iu_fmf 44 247

lcf_du iu_fmf 52 1618

lcf_ems iu_fmf 51 1500

lcf_hz iu_fmf 41 2141 1069

lcf_ia iu_fmf 42 436 1048

lcf_iu iu_fmf 42

lcf_mod iu_fmf 58 884 1872

lcf_pExp iu_fmf 50 3665

hz_lcf_iu lcp_fhz 48 2163 647 207

hz_lcf lcp_fhz_fmf 41 1770 890 176

ems_lcf lhz_fmf 26 1342 1405

hz_lcf lhz_fmf 35 2387 2402 1221 336

lcf_da lhz_fmf 37 1830

lcf_du lhz_fmf 50 206

lcf_ems lhz_fmf 41 744 493

lcf_hz lhz_fmf 33 2002

lcf_ia lhz_fmf 37 1105

lcf_iu lhz_fmf 37 1306

lcf_mod lhz_fmf 52 843 923

lcf_pExp lhz_fmf 43 1145 665

hz_lcf_iu mcp_fhz 64

hz_lcf mcp_fhz_fmf 61 1722

ems_lcf psaoca 55 467 295 568 818

hz_lcf psaoca 53 717 3633

lcf_da psaoca 44 928 893 3014

lcf_du psaoca 67 783

lcf_ems psaoca 62 973 4747 1056

lcf_hz psaoca 55 833 4564

lcf_ia psaoca 49 896 446

lcf_iu psaoca 52 678 2735

lcf_mod psaoca 68 1218

lcf_pExp psaoca 65 1084 2504

shop psaoca 51 818

ems_lcf sdr_fmf 60 432 307 615

hz_lcf sdr_fmf 46 464 3706

lcf_da sdr_fmf 46 944 334

lcf_du sdr_fmf 62 967 3284

lcf_ems sdr_fmf 54 1036 2219

lcf_hz sdr_fmf 46 667 3320 3696

lcf_ia sdr_fmf 48 642 273

lcf_iu sdr_fmf 43 899 2429 4475

lcf_mod sdr_fmf 64 663 3611

lcf_pExp sdr_fmf 56 1253 3423

Min-Avg 26 400 144 176 2322 -- 336 --

1. Quartile 42 783 614 683 2670 -- 821 --

Median 52 1051 1856 1112 3018 -- 1056 --

3. Quartile 62 1603 3266 1830 3367 -- 1264 --

Max-Avg 87 4658 5026 5182 3715 -- 1328 --

Table B.1: The arithmetic means of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the Satellite domain (columns).
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Problem

ModSel PlanSel 1o-1s-1m 2o-1s-1m 2o-2s-1m 2o-2s-2m 3o-1s-1m 3o-2s-3m 3o-3s-1m 3o-3s-3m

ems_lcf cloca 6

hz_lcf cloca 13 21048

lcf_da cloca 15 390233

lcf_du cloca 18 95731

lcf_ems cloca 16 272257

lcf_hz cloca 14 453773

lcf_ia cloca 21 121761

lcf_iu cloca 6 266388

lcf_mod cloca 25 46745

lcf_pExp cloca 34 229462

ems df 108 1025001 660173 861821

shop df 326 391304 0 1713101 0

umcp df 805 2061651 9232526 2937912

ems_lcf du_fmf 0 15036 0

hz_lcf du_fmf 80 0 924800 4418

lcf_da du_fmf 70 0

lcf_du du_fmf 33 3251250

lcf_ems du_fmf 110 0 0

lcf_hz du_fmf 80 0

lcf_ia du_fmf 20 77881

lcf_iu du_fmf 120 0

lcf_mod du_fmf 61 0

lcf_pExp du_fmf 37 0

umcp ff(ct) 75 83987 1314591

ems_lcf fhz_fmf 7 91257 84505 13122

hz_lcf fhz_fmf 11 485319 439674

lcf_da fhz_fmf 18 223026 5952

lcf_du fhz_fmf 58 795761 0

lcf_ems fhz_fmf 19 621344 6613

lcf_hz fhz_fmf 31 302969

lcf_ia fhz_fmf 21 137509 4945 88200

lcf_iu fhz_fmf 15 397514

lcf_mod fhz_fmf 67 324163

lcf_pExp fhz_fmf 68 254673 4703784

hz_lcf_iu fhz_lcp 9 32623 186379

hz_lcf fhz_lcp_fmf 15 88184 0

hz_lcf_iu fhz_mcp 8 486672 0

hz_lcf fhz_mcp_fmf 7 174316

ems_lcf fmh_fmf 0 6380 34193 376519

hz_lcf fmh_fmf 37 7918

lcf_da fmh_fmf 28 27603 1553 45193

lcf_du fmh_fmf 15 37471 60915

lcf_ems fmh_fmf 6 34869

lcf_hz fmh_fmf 21 16522

lcf_ia fmh_fmf 3 26381 807 0 169422

lcf_iu fmh_fmf 21 7862

lcf_mod fmh_fmf 117 80269

lcf_pExp fmh_fmf 5 19310 0 32258

ems_lcf iu_fmf 0 0 79385

hz_lcf iu_fmf 129 51200 0 647068

lcf_da iu_fmf 84 0

lcf_du iu_fmf 210 0

lcf_ems iu_fmf 176 0

lcf_hz iu_fmf 100 2066420 17298

lcf_ia iu_fmf 117 1201 0

lcf_iu iu_fmf 117

lcf_mod iu_fmf 135 0 0

lcf_pExp iu_fmf 142 0

hz_lcf_iu lcp_fhz 175 686995 0 0

hz_lcf lcp_fhz_fmf 203 51977 1350124 0

ems_lcf lhz_fmf 0 643702 740556

hz_lcf lhz_fmf 30 0 2618293 522582 0

lcf_da lhz_fmf 30 288

lcf_du lhz_fmf 64 0

lcf_ems lhz_fmf 41 26558 0

lcf_hz lhz_fmf 20 0

lcf_ia lhz_fmf 30 371952

lcf_iu lhz_fmf 30 859361

lcf_mod lhz_fmf 40 13945 0

lcf_pExp lhz_fmf 22 540800 0

hz_lcf_iu mcp_fhz 0

hz_lcf mcp_fhz_fmf 33 54450

ems_lcf psaoca 212 10631 1885 19532 16570

hz_lcf psaoca 140 85662 0

lcf_da psaoca 179 178777 80678 0

lcf_du psaoca 212 21638

lcf_ems psaoca 325 138227 0 0

lcf_hz psaoca 253 42635 0

lcf_ia psaoca 126 21447 19726

lcf_iu psaoca 108 13345 453462

lcf_mod psaoca 191 319376

lcf_pExp psaoca 149 32813 2597491

shop psaoca 227 9322

ems_lcf sdr_fmf 0 382 72 299151

hz_lcf sdr_fmf 11 83174 1050997

lcf_da sdr_fmf 29 133916 4069

lcf_du sdr_fmf 24 116147 3301008

lcf_ems sdr_fmf 16 336694 3129676

lcf_hz sdr_fmf 29 109915 238342 0

lcf_ia sdr_fmf 18 198705 348

lcf_iu sdr_fmf 7 100125 3760384 152190

lcf_mod sdr_fmf 28 157936 280501

lcf_pExp sdr_fmf 13 250266 860322

Min-Avg 0 0 0 0 0 -- 0 --

1. Quartile 15 27603 0 0 94130 -- 8285 --

Median 30 95731 13945 288 188259 -- 32258 --

3. Quartile 110 266388 651937 299151 282389 -- 53054 --

Max-Avg 805 2061651 9232526 2937912 376519 -- 169422 --

Table B.2: The sample variance of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the Satellite domain (columns).
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B Empirical Evaluation – Data

Problem

ModSel PlanSel 1s-1o-1m 2o-1s-1m 2o-2s-1m 2o-2s-2m 3o-1s-1m 3o-2s-3m 3o-3s-1m 3o-3s-3m Avg

ems_lcf cloca 0% 100% 100% 100% 100% 100% 100% 100% 88%

hz_lcf cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_da cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_du cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_ems cloca 0% 40% 100% 100% 100% 100% 100% 100% 80%

lcf_hz cloca 0% 20% 100% 100% 100% 100% 100% 100% 78%

lcf_ia cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_iu cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_mod cloca 0% 40% 100% 100% 100% 100% 100% 100% 80%

lcf_pExp cloca 0% 0% 100% 100% 100% 100% 100% 100% 75%

ems df 0% 40% 0% 0% 100% 100% 100% 100% 55%

shop df 0% 40% 80% 60% 80% 100% 100% 100% 70%

umcp df 0% 20% 40% 40% 100% 100% 100% 100% 63%

ems_lcf du_fmf 0% 100% 40% 80% 100% 100% 100% 100% 78%

hz_lcf du_fmf 0% 80% 60% 60% 100% 100% 100% 100% 75%

lcf_da du_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

lcf_du du_fmf 0% 100% 60% 100% 100% 100% 100% 100% 83%

lcf_ems du_fmf 0% 80% 80% 100% 100% 100% 100% 100% 83%

lcf_hz du_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

lcf_ia du_fmf 0% 100% 40% 100% 100% 100% 100% 100% 80%

lcf_iu du_fmf 0% 100% 100% 80% 100% 100% 100% 100% 85%

lcf_mod du_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

lcf_pExp du_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

umcp ff(ct) 0% 0% 0% 100% 100% 100% 100% 100% 63%

ems_lcf fhz_fmf 0% 0% 0% 60% 100% 100% 100% 100% 58%

hz_lcf fhz_fmf 0% 0% 40% 100% 100% 100% 100% 100% 68%

lcf_da fhz_fmf 0% 0% 0% 100% 100% 100% 100% 100% 63%

lcf_du fhz_fmf 0% 0% 80% 100% 100% 100% 100% 100% 73%

lcf_ems fhz_fmf 0% 0% 60% 100% 100% 100% 100% 100% 70%

lcf_hz fhz_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_ia fhz_fmf 0% 0% 0% 60% 100% 100% 100% 100% 58%

lcf_iu fhz_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_mod fhz_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_pExp fhz_fmf 0% 0% 20% 100% 100% 100% 100% 100% 65%

hz_lcf_iu fhz_lcp 0% 0% 20% 100% 100% 100% 100% 100% 65%

hz_lcf fhz_lcp_fmf 0% 0% 80% 100% 100% 100% 100% 100% 73%

hz_lcf_iu fhz_mcp 0% 0% 80% 100% 100% 100% 100% 100% 73%

hz_lcf fhz_mcp_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

ems_lcf fmh_fmf 0% 0% 0% 100% 0% 100% 100% 100% 50%

hz_lcf fmh_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_da fmh_fmf 0% 0% 0% 100% 100% 100% 0% 100% 50%

lcf_du fmh_fmf 0% 0% 100% 100% 100% 100% 20% 100% 65%

lcf_ems fmh_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_hz fmh_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_ia fmh_fmf 0% 0% 0% 80% 100% 100% 40% 100% 53%

lcf_iu fmh_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_mod fmh_fmf 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_pExp fmh_fmf 0% 0% 80% 100% 100% 100% 60% 100% 68%

ems_lcf iu_fmf 0% 100% 80% 0% 100% 100% 100% 100% 73%

hz_lcf iu_fmf 0% 60% 80% 20% 100% 100% 100% 100% 70%

lcf_da iu_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

lcf_du iu_fmf 0% 100% 100% 80% 100% 100% 100% 100% 85%

lcf_ems iu_fmf 0% 100% 100% 80% 100% 100% 100% 100% 85%

lcf_hz iu_fmf 0% 100% 40% 60% 100% 100% 100% 100% 75%

lcf_ia iu_fmf 0% 100% 60% 80% 100% 100% 100% 100% 80%

lcf_iu iu_fmf 0% 100% 100% 100% 100% 100% 100% 100% 88%

lcf_mod iu_fmf 0% 100% 80% 80% 100% 100% 100% 100% 83%

lcf_pExp iu_fmf 0% 100% 80% 100% 100% 100% 100% 100% 85%

hz_lcf_iu lcp_fhz 0% 0% 80% 80% 100% 100% 100% 100% 70%

hz_lcf lcp_fhz_fmf 0% 0% 40% 80% 100% 100% 100% 100% 65%

ems_lcf lhz_fmf 0% 100% 0% 0% 100% 100% 100% 100% 63%

hz_lcf lhz_fmf 0% 80% 20% 40% 100% 100% 80% 100% 65%

lcf_da lhz_fmf 0% 100% 100% 60% 100% 100% 100% 100% 83%

lcf_du lhz_fmf 0% 100% 100% 80% 100% 100% 100% 100% 85%

lcf_ems lhz_fmf 0% 100% 40% 80% 100% 100% 100% 100% 78%

lcf_hz lhz_fmf 0% 100% 100% 80% 100% 100% 100% 100% 85%

lcf_ia lhz_fmf 0% 100% 100% 0% 100% 100% 100% 100% 75%

lcf_iu lhz_fmf 0% 100% 100% 60% 100% 100% 100% 100% 83%

lcf_mod lhz_fmf 0% 100% 60% 80% 100% 100% 100% 100% 80%

lcf_pExp lhz_fmf 0% 100% 60% 80% 100% 100% 100% 100% 80%

hz_lcf_iu mcp_fhz 0% 100% 100% 100% 100% 100% 100% 100% 88%

hz_lcf mcp_fhz_fmf 0% 60% 100% 100% 100% 100% 100% 100% 83%

ems_lcf psaoca 0% 0% 0% 0% 100% 100% 40% 100% 43%

hz_lcf psaoca 0% 0% 80% 100% 100% 100% 100% 100% 73%

lcf_da psaoca 0% 0% 20% 80% 100% 100% 100% 100% 63%

lcf_du psaoca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_ems psaoca 0% 0% 80% 100% 100% 100% 80% 100% 70%

lcf_hz psaoca 0% 0% 80% 100% 100% 100% 100% 100% 73%

lcf_ia psaoca 0% 0% 0% 100% 100% 100% 100% 100% 63%

lcf_iu psaoca 0% 0% 0% 100% 100% 100% 100% 100% 63%

lcf_mod psaoca 0% 0% 100% 100% 100% 100% 100% 100% 75%

lcf_pExp psaoca 0% 0% 20% 100% 100% 100% 100% 100% 65%

shop psaoca 0% 0% 100% 100% 100% 100% 100% 100% 75%

ems_lcf sdr_fmf 0% 0% 0% 0% 100% 100% 100% 100% 50%

hz_lcf sdr_fmf 0% 0% 20% 100% 100% 100% 100% 100% 65%

lcf_da sdr_fmf 0% 0% 0% 100% 100% 100% 100% 100% 63%

lcf_du sdr_fmf 0% 0% 20% 100% 100% 100% 100% 100% 65%

lcf_ems sdr_fmf 0% 0% 20% 100% 100% 100% 100% 100% 65%

lcf_hz sdr_fmf 0% 0% 40% 80% 100% 100% 100% 100% 65%

lcf_ia sdr_fmf 0% 0% 0% 100% 100% 100% 100% 100% 63%

lcf_iu sdr_fmf 0% 0% 20% 40% 100% 100% 100% 100% 58%

lcf_mod sdr_fmf 0% 0% 60% 100% 100% 100% 100% 100% 70%

lcf_pExp sdr_fmf 0% 0% 0% 100% 100% 100% 100% 100% 63%

Min-F-Ratio 0% 0% 0% 0% 0% 100% 0% 100% 43%

1. Quartile 0% 0% 20% 80% 100% 100% 100% 100% 65%

Median 0% 0% 80% 100% 100% 100% 100% 100% 75%

3. Quartile 0% 100% 100% 100% 100% 100% 100% 100% 80%

Max-F-Ratio 0% 100% 100% 100% 100% 100% 100% 100% 88%

Average 0% 36% 63% 84% 99% 100% 96% 100% 72%

Table B.3: The failure ratio of the strategy combinations (rows) in the problem instances of the Satellite
domain (columns).
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Problem

ModSel PlanSel

2-Regular 

Truck
Airplane

Armored 

Regular Truck

Auto 

Traincar

Auto 

Traincar - 

bis

Auto 

Truck

Flatbed 

Truck

Hopper 

Truck

Mail 

Traincar

Refrigerated 

Traincar

Regular 

Truck

Regular 

Truck - 3Loc

Tanker 

Truck

ems_lcf cloca

hz_lcf cloca 858 124 2316 541 279 221 396 484 124 323 174

lcf_da cloca 1793 102 1174 274 255 184 911 845 85 546 250

lcf_du cloca 2625 94 1081 352 293 222 957 1006 109 591 250

lcf_ems cloca 2696 162 1826 510 681 361 1806 1947 167 1159 506

lcf_hz cloca 2562 107 1077 324 283 219 1020 917 128 619 258

lcf_ia cloca 1801 81 782 305 244 182 625 599 80 538 237

lcf_iu cloca 2299 88 832 321 271 193 703 684 86 596 239

lcf_mod cloca 2442 84 1072 302 274 178 905 915 81 592 228

lcf_pExp cloca 2720 196 1742 565 779 413 1560 1548 166 1413 429

ems df 852 99 274 180 1266 623 229 480 1309 1700 315 110 149

shop df 321 88 188 170 821 1084 249 402 337 233 403 123 219

umcp df 949 152 394 353 280 679 856 698 2626 1315 723 182 130

ems_lcf du_fmf

hz_lcf du_fmf 290 1024 341 263 1981 1992 278 320 270

lcf_da du_fmf 260 788 280 262 1563 1648 261 344 291

lcf_du du_fmf 288 811 352 255 1967 1970 287 389 317

lcf_ems du_fmf 630 1393 612 463 2331 2242 625 708 624

lcf_hz du_fmf 289 754 339 255 1654 1678 291 397 302

lcf_ia du_fmf 257 775 278 257 1383 1453 255 349 277

lcf_iu du_fmf 280 768 324 251 1457 1378 282 395 293

lcf_mod du_fmf 243 819 332 253 1554 1515 282 396 278

lcf_pExp du_fmf 627 1043 747 541 2357 2535 425 1001 554

umcp ff(ct) 1367 314 156 395 451 327 193 194 273 313 182 202 151

ems_lcf fhz_fmf 467 2626 1762 601 2783 621 348 448 587 1210 376

hz_lcf fhz_fmf 2685 240 77 377 221 143 75 90 91 71 194 68

lcf_da fhz_fmf 951 98 78 515 109 91 79 503 436 79 212 88

lcf_du fhz_fmf 855 154 82 537 110 97 78 691 856 82 245 93

lcf_ems fhz_fmf 1425 185 129 735 155 150 131 829 999 116 249 117

lcf_hz fhz_fmf 609 176 82 610 109 92 80 708 701 82 248 90

lcf_ia fhz_fmf 1067 90 78 425 107 87 76 525 451 76 213 85

lcf_iu fhz_fmf 846 168 82 421 108 93 76 552 545 80 244 85

lcf_mod fhz_fmf 377 111 73 601 102 85 73 731 900 74 243 80

lcf_pExp fhz_fmf 1639 176 140 967 159 123 131 1305 1235 120 304 110

hz_lcf_iu fhz_lcp 1969 413 76 526 222 132 74 89 89 74 154 65

hz_lcf fhz_lcp_fmf 2989 287 74 410 202 127 73 92 90 73 174 68

hz_lcf_iu fhz_mcp 255 76 370 229 135 74 89 89 74 184 68

hz_lcf fhz_mcp_fmf 326 75 392 225 151 73 91 91 75 194 73

ems_lcf fmh_fmf 879 4677 4524 2808 4389 1050 3259

hz_lcf fmh_fmf 1070 132 74 346 196 101 79 87 135 90 158 107

lcf_da fmh_fmf 1765 158 75 470 184 104 82 74 129 195 72 207 82

lcf_du fmh_fmf 153 74 436 331 97 83 65 206 278 68 124 100

lcf_ems fmh_fmf 1953 171 117 453 433 129 140 134 419 379 114 256 139

lcf_hz fmh_fmf 155 71 393 293 101 77 66 233 239 73 144 103

lcf_ia fmh_fmf 1471 146 69 501 284 100 77 69 254 252 70 208 75

lcf_iu fmh_fmf 1263 146 70 315 291 95 76 64 249 311 66 122 71

lcf_mod fmh_fmf 385 679 73 607 476 152 129 121 468 455 122 114 127

lcf_pExp fmh_fmf 2173 208 119 757 414 134 169 121 434 217 131 341 160

ems_lcf iu_fmf

hz_lcf iu_fmf 257 1038 344 280 2015 2036 278 303 250

lcf_da iu_fmf 258 767 287 260 1699 1753 255 344 284

lcf_du iu_fmf 290 755 351 251 1936 1915 283 393 318

lcf_ems iu_fmf 558 1216 668 600 2277 2293 423 798 595

lcf_hz iu_fmf 290 750 331 255 1596 1604 290 397 304

lcf_ia iu_fmf 252 769 279 256 1310 1308 256 345 280

lcf_iu iu_fmf 280 747 328 249 1306 1474 284 393 293

lcf_mod iu_fmf 244 750 336 253 1504 1450 284 386 278

lcf_pExp iu_fmf 590 1526 678 522 2342 2402 567 718 556

hz_lcf_iu lcp_fhz 1442 237 846 273 240 1483 1724 229 163 244

hz_lcf lcp_fhz_fmf 237 827 276 223 1772 1783 238 136 227

ems_lcf lhz_fmf 2021 3447 2467 3068 2965 3147 2023

hz_lcf lhz_fmf 256 986 308 255 1399 1850 267 313 245

lcf_da lhz_fmf 257 767 286 256 1677 1612 260 328 294

lcf_du lhz_fmf 281 751 344 258 2278 1959 285 386 320

lcf_ems lhz_fmf 483 1392 722 548 2561 2118 498 796 538

lcf_hz lhz_fmf 292 3290 757 328 260 1880 1698 294 395 303

lcf_ia lhz_fmf 254 765 281 256 1377 1465 252 338 278

lcf_iu lhz_fmf 281 746 324 254 1474 1433 282 381 289

lcf_mod lhz_fmf 244 750 322 254 1622 282 395 276

lcf_pExp lhz_fmf 521 1430 645 411 2780 569 710 628

hz_lcf_iu mcp_fhz 1669 224 735 265 206 1129 844 212 291 159

hz_lcf mcp_fhz_fmf 1683 229 798 294 225 1034 1110 229 332 183

ems_lcf psaoca 1007 1619 1552 1559 2509 1242

hz_lcf psaoca 339 82 1018 613 199 112 211 229 118 272 86

lcf_da psaoca 723 208 79 741 160 134 82 708 676 81 327 90

lcf_du psaoca 1109 315 213 853 428 191 156 765 776 161 356 101

lcf_ems psaoca 1812 337 137 1540 215 252 136 1496 880 116 494 141

lcf_hz psaoca 767 319 132 2215 768 159 173 186 777 718 128 354 102

lcf_ia psaoca 717 200 79 2937 500 147 147 78 424 421 78 329 85

lcf_iu psaoca 307 208 1936 497 801 183 187 459 461 210 359 96

lcf_mod psaoca 342 183 75 847 151 120 75 821 780 77 352 87

lcf_pExp psaoca 1602 358 175 1418 186 320 142 1248 1596 143 520 150

shop psaoca 489 708 3228 767 682 724 2792 3115 693 1227 517

ems_lcf sdr_fmf 919 481 125 253 208 317 768 308 183 185 314 381 114

hz_lcf sdr_fmf 729 135 77 295 90 126 71 94 89 75 153 68

lcf_da sdr_fmf 472 93 218 123 110 89 79 720 1138 80 209 245

lcf_du sdr_fmf 585 102 79 122 110 99 80 942 989 81 244 93

lcf_ems sdr_fmf 805 134 194 173 155 116 129 1001 1316 122 297 228

lcf_hz sdr_fmf 486 101 76 128 108 94 79 915 506 80 248 89

lcf_ia sdr_fmf 487 91 255 122 107 88 78 301 1184 77 211 277

lcf_iu sdr_fmf 591 99 75 118 110 91 75 504 909 79 244 88

lcf_mod sdr_fmf 347 87 73 113 102 84 73 955 785 73 244 272

lcf_pExp sdr_fmf 952 112 86 137 145 129 125 841 1393 124 282 105

Min-Avg 321 87 69 170 113 90 76 64 87 89 66 110 65

1. Quartile 600 138 79 363 294 151 127 79 440 453 80 220 97

Median 919 204 181 462 499 390 260 200 929 989 152 331 227

3. Quartile 1448 464 270 1641 881 768 329 257 1558 1617 283 397 290

Max-Avg 2989 2720 2021 3290 3228 4677 2783 4524 2792 3115 4389 3147 3259

Table B.4: The arithmetic means of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the UM Translog domain (columns).
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B Empirical Evaluation – Data

Problem

ModSel PlanSel

2 - Regular 

Truck
Airplane

Armored 

Regular 

Truck

Auto 

Traincar

Auto 

Traincar - 

bis

Auto 

Truck

Flatbed 

Truck

Hopper 

Truck

Mail 

Traincar

Refrigerated 

Traincar

Regular 

Truck

Regular 

Truck - 3Loc

Tanker 

Truck

ems_lcf cloca

hz_lcf cloca 19489 1146 235541 15273 1069 455 9202 31030 605 33 49

lcf_da cloca 247 828 33777 922 67 8 3728 18590 25 6 22

lcf_du cloca 582 96 12914 2215 67 166 45869 23669 1808 28 89

lcf_ems cloca 1814 3580 448616 22908 61953 19178 390212 338944 3508 196394 35494

lcf_hz cloca 3110 284 2933 879 38 375 6303 27498 1875 49 37

lcf_ia cloca 279 32 1390 1005 32 15 14540 11079 23 86 24

lcf_iu cloca 2777 1 32813 174 16 502 16904 16789 13 16 15

lcf_mod cloca 30 232 10513 255 6 239 9400 13286 26 63 2

lcf_pExp cloca 0 3245 469917 58936 33744 12091 409423 437182 5369 220872 31460

ems df 102152 48 42304 369 2322013 1126643 64838 47566 0 0 84946 122 12377

shop df 0 2 23719 648 1451857 1664186 23269 197877 38916 41103 88635 2091 34342

umcp df 221 120 162723 50 8845 915248 1997758 203219 0 2631218 801408 328 92

ems_lcf du_fmf

hz_lcf du_fmf 755 155 128 586 59457 52872 777 7 191

lcf_da du_fmf 31 900 12 9 679 20168 15 22 37

lcf_du du_fmf 7 6996 61 14 46033 32561 27 14 37

lcf_ems du_fmf 22994 216560 54269 22256 0 2521 21055 63740 40124

lcf_hz du_fmf 28 28 201 5 33206 35164 82 18 124

lcf_ia du_fmf 17 279 22 25 22876 35553 26 10 9

lcf_iu du_fmf 45 632 6 17 41785 29975 10 9 51

lcf_mod du_fmf 1 8870 0 0 0 0 4 0 16

lcf_pExp du_fmf 22184 125923 57945 26981 4676 88163 20372 1247 42564

umcp ff(ct) 71171 1949 1180 4030 23783 6366 132 118 3984 5224 477 72 426

ems_lcf fhz_fmf 3301 329672 94331 3593 4825 559 6757 59839 4532 980 28853

hz_lcf fhz_fmf 0 1189 1 21700 34 359 2 7 13 32 514 6

lcf_da fhz_fmf 37918 7 2 19916 5 8 3 13572 3261 6 10 3

lcf_du fhz_fmf 97256 107 5 50626 7 23 9 35773 77089 12 7 59

lcf_ems fhz_fmf 585610 3542 747 44757 650 4142 255 72585 247294 527 2292 571

lcf_hz fhz_fmf 19631 2670 3 31486 5 18 13 36915 76439 2 5 6

lcf_ia fhz_fmf 67178 8 3 576 4 6 7 12289 12154 8 4 1

lcf_iu fhz_fmf 145383 1707 4 285 6 2 6 2052 6337 5 5 5

lcf_mod fhz_fmf 63 2001 1 26625 1 0 1 91538 77304 0 4 9

lcf_pExp fhz_fmf 460356 2749 585 145376 471 607 393 420625 533727 432 372 789

hz_lcf_iu fhz_lcp 252828 19476 0 0 0 7 0 0 0 0 2734 0

hz_lcf fhz_lcp_fmf 0 3722 17 12376 568 269 27 14 17 20 745 8

hz_lcf_iu fhz_mcp 4958 0 48805 3 9 0 0 0 0 333 4

hz_lcf fhz_mcp_fmf 3950 15 40234 76 498 22 16 15 0 67 3

ems_lcf fmh_fmf 866 82722 74703 0 85694 5296 41867

hz_lcf fmh_fmf 0 543 20 491 216 4222 253 67 1041 2000 3806 7708

lcf_da fmh_fmf 542236 129 39 150 7942 18 20 29 5492 8578 15 66 58

lcf_du fmh_fmf 160 14 32391 23394 48 115 4 4159 20765 10 58 1009

lcf_ems fmh_fmf 0 2305 605 23686 16250 81 802 997 18075 21100 1057 3219 3226

lcf_hz fmh_fmf 191 29 6008 1570 14 40 24 31 16 61 67 1609

lcf_ia fmh_fmf 146536 67 4 4554 24 6 8 3 11 87 6 57 7

lcf_iu fmh_fmf 42307 139 0 156 4828 48 30 5 2523 2562 57 10 6

lcf_mod fmh_fmf 14011 1 3 4157 2954 0 1 0 594 398 0 0 2

lcf_pExp fmh_fmf 0 4429 769 181818 35748 1682 154 782 14356 9982 1391 9917 3535

ems_lcf iu_fmf

hz_lcf iu_fmf 209 303 1787 1156 52508 46291 1035 4 136

lcf_da iu_fmf 2 7 34 7 105679 144586 21 43 31

lcf_du iu_fmf 19 51 75 24 10858 2183 16 8 25

lcf_ems iu_fmf 33119 199189 37540 23132 4069 5941 18490 59955 37810

lcf_hz iu_fmf 12 55 14 33 4133 2894 39 55 31

lcf_ia iu_fmf 21 10 8 26 50 43 33 26 23

lcf_iu iu_fmf 14 29 34 18 17 139622 27 7 42

lcf_mod iu_fmf 0 1 117 1 0 0 0 7 8

lcf_pExp iu_fmf 41602 121550 44295 31619 33550 16749 31941 63195 36977

hz_lcf_iu lcp_fhz 0 10 137 6 6 201030 2768 448 8311 22

hz_lcf lcp_fhz_fmf 13 501 7 669 279 391 240 0 989

ems_lcf lhz_fmf 11151 353218 92839 52736 107358 77374 21930

hz_lcf lhz_fmf 304 353 316 11 115767 31189 364 54 228

lcf_da lhz_fmf 11 31 35 6 28495 15366 29 41 21

lcf_du lhz_fmf 13 27 116 22 85120 24947 29 153 47

lcf_ems lhz_fmf 34304 217485 47024 27000 43557 0 33233 59533 36141

lcf_hz lhz_fmf 100 0 32 36 43 59504 21321 51 85 141

lcf_ia lhz_fmf 15 41 20 7 4204 4007 20 89 59

lcf_iu lhz_fmf 25 8 212 6 3099 8164 9 192 10

lcf_mod lhz_fmf 1 1 11 0 0 1 5 16

lcf_pExp lhz_fmf 36610 251286 58135 15697 54057 33437 68155 36419

hz_lcf_iu mcp_fhz 4719 327 13 1264 461 266360 4 202 7283 30

hz_lcf mcp_fhz_fmf 787 1054 1769 1681 684 30841 19241 496 5 2302

ems_lcf psaoca 6845 11506 4881 25883 29408 41689

hz_lcf psaoca 36210 16 39840 36007 2678 1819 14 865 3271 334 9

lcf_da psaoca 116596 33 9 7758 384 2681 10 1750 601 6 109 7

lcf_du psaoca 64222 13 12533 4193 76409 62 9334 1975 12986 10503 52 29

lcf_ems psaoca 155639 7635 946 251971 880 13725 1205 241581 8297 832 1525 538

lcf_hz psaoca 23615 363 8823 0 8262 868 2272 9539 2752 6219 9194 64 9

lcf_ia psaoca 20885 19 3 2 1508 489 3156 4 24 2 10 34 24

lcf_iu psaoca 30 13113 0 1137 456 16 9345 17 6 12897 169 45

lcf_mod psaoca 3065 3 3 2044 710 2323 6 2851 17176 3 209 17

lcf_pExp psaoca 77894 11387 13229 166013 2305 9067 1119 227491 304582 591 395 448

shop psaoca 2022 413 25853 7027 5879 863 103819 159249 6080 42945 6213

ems_lcf sdr_fmf 1409 35763 343 3903 5 134 80205 1242 158 59 610 3485 53

hz_lcf sdr_fmf 61648 4030 0 31396 1 592 34 18 2 1 7 11

lcf_da sdr_fmf 8116 11 6285 7 1 5 15 324799 24 5 1 8269

lcf_du sdr_fmf 11270 34 19 25 6 4 3 598424 691473 11 2 23

lcf_ems sdr_fmf 40174 463 22407 1729 838 400 248 645506 1571533 792 2233 27331

lcf_hz sdr_fmf 1751 16 2 133 3 7 5 209417 314583 11 5 17

lcf_ia sdr_fmf 6207 9 11 0 10 9 1 216529 11912 4 3 13

lcf_iu sdr_fmf 9935 11 0 8 1 6 4 312835 206457 7 2 11

lcf_mod sdr_fmf 720 0 1 1 0 1 1 645213 667004 1 1 11

lcf_pExp sdr_fmf 18149 91 9 0 358 809 494 991313 507068 599 2575 17

Min-Var 0 0 0 0 0 0 0 0 0 0 0 0 0

1. Quartile 1580 30 6 75 1327 13 14 6 616 499 10 8 11

Median 20885 321 28 2275 11444 291 115 28 11573 12986 45 65 40

3. Quartile 87575 2770 1027 5645 36771 2282 2412 963 59492 43697 1703 1455 1004

Max-Var 585610 36210 162723 329672 2322013 1664186 1997758 203219 991313 2631218 801408 220872 42564

Table B.5: The sample variance of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the UM Translog domain (columns).
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ModSel PlanSel

2 - 

Regular 

Truck

Airplane

Armored 

Regular 

Truck

Auto 

Traincar

Auto 

Traincar - 

bis

Auto 

Truck

Flatbed 

Truck

Hopper 

Truck

Mail 

Traincar

Refrigerated 

Traincar

Regular 

Truck

Regular 

Truck - 3 Loc

Tanker 

Truck
Average

ems_lcf cloca 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

hz_lcf cloca 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

lcf_da cloca 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

lcf_du cloca 100% 20% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%

lcf_ems cloca 100% 20% 0% 100% 20% 0% 0% 0% 0% 0% 0% 0% 0% 18%

lcf_hz cloca 100% 20% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%

lcf_ia cloca 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

lcf_iu cloca 100% 20% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%

lcf_mod cloca 100% 0% 0% 100% 20% 0% 0% 0% 0% 20% 0% 0% 0% 18%

lcf_pExp cloca 100% 80% 0% 100% 20% 0% 0% 0% 0% 0% 0% 0% 0% 23%

ems df 60% 40% 0% 40% 60% 0% 0% 0% 80% 80% 0% 0% 0% 28%

shop df 80% 60% 0% 60% 40% 0% 0% 0% 40% 40% 0% 0% 0% 25%

umcp df 60% 40% 0% 60% 60% 20% 20% 0% 80% 60% 0% 0% 0% 31%

ems_lcf du_fmf 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

hz_lcf du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_da du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_du du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_ems du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 80% 60% 0% 0% 0% 42%

lcf_hz du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_ia du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_iu du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_mod du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 80% 80% 0% 0% 0% 43%

lcf_pExp du_fmf 100% 100% 0% 100% 100% 0% 0% 0% 20% 20% 0% 0% 0% 34%

umcp ff(ct) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

ems_lcf fhz_fmf 100% 100% 0% 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%

hz_lcf fhz_fmf 80% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14%

lcf_da fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_du fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_ems fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_hz fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_ia fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_iu fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_mod fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_pExp fhz_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

hz_lcf_iu fhz_lcp 20% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 9%

hz_lcf fhz_lcp_fmf 80% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14%

hz_lcf_iu fhz_mcp 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

hz_lcf fhz_mcp_fmf 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

ems_lcf fmh_fmf 100% 100% 0% 100% 100% 20% 100% 0% 100% 80% 20% 0% 0% 55%

hz_lcf fmh_fmf 80% 20% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

lcf_da fmh_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_du fmh_fmf 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_ems fmh_fmf 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%

lcf_hz fmh_fmf 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_ia fmh_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_iu fmh_fmf 40% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3%

lcf_mod fmh_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_pExp fmh_fmf 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%

ems_lcf iu_fmf 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

hz_lcf iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_da iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_du iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_ems iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 40% 60% 0% 0% 0% 38%

lcf_hz iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_ia iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_iu iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_mod iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 80% 80% 0% 0% 0% 43%

lcf_pExp iu_fmf 100% 100% 0% 100% 100% 0% 0% 0% 20% 40% 0% 0% 0% 35%

hz_lcf_iu lcp_fhz 100% 80% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 29%

hz_lcf lcp_fhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

ems_lcf lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 100% 100% 0% 40% 0% 49%

hz_lcf lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_da lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_du lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_ems lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 40% 80% 0% 0% 0% 40%

lcf_hz lhz_fmf 100% 100% 0% 80% 100% 0% 0% 0% 0% 0% 0% 0% 0% 29%

lcf_ia lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_iu lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

lcf_mod lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 100% 80% 0% 0% 0% 45%

lcf_pExp lhz_fmf 100% 100% 0% 100% 100% 0% 0% 0% 40% 100% 0% 0% 0% 42%

hz_lcf_iu mcp_fhz 100% 0% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 23%

hz_lcf mcp_fhz_fmf 100% 20% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 25%

ems_lcf psaoca 100% 100% 0% 100% 100% 0% 100% 0% 100% 100% 0% 40% 0% 57%

hz_lcf psaoca 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

lcf_da psaoca 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_du psaoca 20% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 9%

lcf_ems psaoca 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_hz psaoca 20% 0% 0% 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_ia psaoca 0% 0% 0% 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5%

lcf_iu psaoca 100% 0% 0% 80% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14%

lcf_mod psaoca 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_pExp psaoca 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

shop psaoca 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

ems_lcf sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

hz_lcf sdr_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_da sdr_fmf 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

lcf_du sdr_fmf 0% 0% 0% 100% 20% 0% 0% 0% 0% 0% 0% 0% 0% 9%

lcf_ems sdr_fmf 0% 0% 0% 100% 40% 0% 0% 0% 0% 0% 0% 0% 0% 11%

lcf_hz sdr_fmf 0% 0% 0% 100% 40% 0% 0% 0% 0% 0% 0% 0% 0% 11%

lcf_ia sdr_fmf 0% 0% 0% 100% 40% 0% 0% 0% 0% 0% 0% 0% 0% 11%

lcf_iu sdr_fmf 0% 0% 0% 100% 60% 0% 0% 0% 0% 0% 0% 0% 0% 12%

lcf_mod sdr_fmf 0% 0% 0% 100% 40% 0% 0% 0% 0% 20% 0% 0% 0% 12%

lcf_pExp sdr_fmf 0% 0% 0% 100% 80% 0% 0% 0% 0% 0% 0% 0% 0% 14%

Min-F-Ratio 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1. Quartile 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

Median 100% 0% 0% 100% 20% 0% 0% 0% 0% 0% 0% 0% 0% 17%

3. Quartile 100% 100% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 31%

Max-F-Ratio 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Average 66% 42% 3% 86% 46% 4% 6% 3% 14% 15% 3% 4% 3% 23%

Problem

Table B.6: The failure ratio of the strategy combinations (rows) in the problem instances of the
UM Translog domain (columns).
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B Empirical Evaluation – Data

ModSel PlanSel P0 P1 P2 P0-2 P0-P1 P1-2 P0-3 P0-P2 P1-3 P1-P2 P0-P1-P2 P2-2 P2-3

ems_lcf cloca 17 24 92 684 1714 4251 2437 6480

hz_lcf cloca 17 23 209 3111 7171

lcf_da cloca 17 23 112 403 2601 4812 6348 2069 7988

lcf_du cloca 17 23 174 2514

lcf_ems cloca 17 23 96 802 2534 6287 3545

lcf_hz cloca 17 23 125 3683 5639

lcf_ia cloca 17 23 181 608 1291 6151 5852

lcf_iu cloca 17 23 161 493 1516 4813 5468

lcf_mod cloca 16 24 142 4176

lcf_pExp cloca 15 23 177 3967 8233

ems df 17 24 49 95 112 149 248 233 310 250 424 370 1036

shop df 15 23 52 120 250 253 488 195 815 272 638 371 985

umcp df 16 22 57 150 138 855 523 274 917 1716 874 634

ems_lcf du_fmf 17 24 46 88 129 143 213 301 558

hz_lcf du_fmf 17 24 1028

lcf_da du_fmf 17 24 43 144 472 437 1073 2396

lcf_du du_fmf 17 24 58 244 608 531 2151 2546

lcf_ems du_fmf 17 24 45 155 137 187 199 262 1126 863

lcf_hz du_fmf 17 24 1142 1096 1316 1153

lcf_ia du_fmf 17 24 846 339 222 654 204 2334

lcf_iu du_fmf 17 24 982 347 613 891 200 2565

lcf_mod du_fmf 17 24 58 140 276 261 503 1183 1065

lcf_pExp du_fmf 17 24 63 166 233 598 295 330 1402 1223

umcp ff(ct) 16 23 120 5602

ems_lcf fhz_fmf 17 24 64 78 105 129 243 121 394 144 587

hz_lcf fhz_fmf 17 24 64 49 63 70 167 860 201 372 234 705

lcf_da fhz_fmf 17 24 63 74 725 164 192 181 329 893 503 948

lcf_du fhz_fmf 17 24 68 74 90 108 187 795 261 425

lcf_ems fhz_fmf 17 24 64 88 116 117 253 160 393 207 551 459 1334

lcf_hz fhz_fmf 17 24 65 51 63 72 141 883 194 421 1169

lcf_ia fhz_fmf 17 24 62 42 52 70 105 235 190 765 327 559 654

lcf_iu fhz_fmf 17 24 61 46 53 187 112 233 165 781 501

lcf_mod fhz_fmf 17 24 68 103 125 798 241 982 412 485 562 1030

lcf_pExp fhz_fmf 17 24 69 89 112 1075 253 183 393 356 498 1068 1190

hz_lcf_iu fhz_lcp 17 24 64 58 96 82 114 388 166 756 190 316 642

hz_lcf fhz_lcp_fmf 17 24 60 48 60 108 146 797 253 356 218 712

hz_lcf_iu fhz_mcp 17 24 65 68 70 181 121 239 539 595 172 740 591

hz_lcf fhz_mcp_fmf 17 24 67 47 66 125 133 571 542 319 254 670

ems_lcf fmh_fmf 17 24 98 254 528 706 2465

hz_lcf fmh_fmf 17 24 87 121 187 335 381 661 1078 665 1002 1203

lcf_da fmh_fmf 17 24 99 386 728 517

lcf_du fmh_fmf 17 24 91 107 171 285 578 6111 1472 296

lcf_ems fmh_fmf 17 24 100 552 1076 1454 3427 1102

lcf_hz fmh_fmf 17 24 90 92 166 197 423 1449

lcf_ia fmh_fmf 17 24 91 78 192 554 379 2642 2587 855

lcf_iu fmh_fmf 17 24 96 117 155 233 518 3211 2205 758

lcf_mod fmh_fmf 17 24 93 1307 169 511 619 676 4603 276

lcf_pExp fmh_fmf 17 24 93 223 184 240 609 5444 2886

ems_lcf iu_fmf 17 24 46 86 114 149 853 219 1284 290 513

hz_lcf iu_fmf 17 24 357 372

lcf_da iu_fmf 17 24 45 92 2181 241 1092 2107

lcf_du iu_fmf 17 24 66 199 335 732 1816 3306

lcf_ems iu_fmf 17 24 44 94 133 211 869 197 940 296 880 611 1740

lcf_hz iu_fmf 17 24 406 1282 522 1696

lcf_ia iu_fmf 17 24 177 204 275 404 1625 1912 1302

lcf_iu iu_fmf 17 24 163 208 502 450 1656 2874

lcf_mod iu_fmf 17 24 70 182 150 468 269 400 1211 735

lcf_pExp iu_fmf 17 24 64 107 179 496 268 262 1022 1541

hz_lcf_iu lcp_fhz 17 24 52 1575 65 77 148 110 233 111 216 157 422

hz_lcf lcp_fhz_fmf 17 24 49 66 89 134 113 203 151 295 223

ems_lcf lhz_fmf 17 24 55 107 117 155 224 324 1298 501

hz_lcf lhz_fmf 17 24 54 68 384 471 182 1976 471 605 1719

lcf_da lhz_fmf 17 24 57 160 2279 368 463 805 3002

lcf_du lhz_fmf 17 24 56 106 420 1121 449 2781

lcf_ems lhz_fmf 17 24 57 97 139 159 215 286

lcf_hz lhz_fmf 17 24 57 57 481 1651 1531

lcf_ia lhz_fmf 17 24 54 75 115 1128 437 2385

lcf_iu lhz_fmf 17 24 51 59 201 1527 501 2771

lcf_mod lhz_fmf 17 24 60 112 203 346 445 284 516 1728

lcf_pExp lhz_fmf 17 24 62 100 144 453 566 296 514 358

hz_lcf_iu mcp_fhz 17 24 311 65 58 93 103 175

hz_lcf mcp_fhz_fmf 17 24 861 50 132 153

ems_lcf psaoca 17 24 75 119 198 210 599 349 1270 296 999

hz_lcf psaoca 17 24 140 82 101 126 514 526 526 2276 1082 365

lcf_da psaoca 17 23 74 100 653 212 261 226 607 423 621 1013 1433

lcf_du psaoca 17 24 131 77 115 174 262 814 673 1384 559 1873

lcf_ems psaoca 17 24 65 106 177 212 354 289 1337 493 607 567 1549

lcf_hz psaoca 17 23 111 96 98 125 274 792 382 701 518 2549

lcf_ia psaoca 17 24 87 59 70 92 146 221 241 530 963 796 1666

lcf_iu psaoca 16 24 132 60 73 94 151 227 236 542 1006 425 1309

lcf_mod psaoca 16 23 155 1238 1849 591 474 923 1049 954 4415 2116

lcf_pExp psaoca 15 23 113 262 781 565 539 499 1152 556 1135 541 1947

shop psaoca 16 22 54 112 1509 325 1868

ems_lcf sdr_fmf 17 24 45 73 98 125 250 108 469 134 310

hz_lcf sdr_fmf 17 24 43 51 71 135 138 294 357 203 678

lcf_da sdr_fmf 17 24 43 79 1671 161 171 147 320 624

lcf_du sdr_fmf 17 24 49 87 86 192 202 692 342 559

lcf_ems sdr_fmf 17 24 44 82 118 129 259 157 429 207 456 430 1362

lcf_hz sdr_fmf 17 24 47 50 61 139 127 803 192 577 380

lcf_ia sdr_fmf 17 24 42 41 50 64 105 237 160 606 288 507 564

lcf_iu sdr_fmf 17 24 43 42 59 94 117 236 200 604 1055

lcf_mod sdr_fmf 17 24 46 91 109 540 282 604 397 466 491 1020

lcf_pExp sdr_fmf 17 24 47 84 115 175 272 381 372 260 572 804 1134

Min-Avg 15 22 42 41 50 64 105 103 160 111 172 157 422

1. Quartile 17 24 54 76 100 132 150 223 247 279 421 467 698

Median 17 24 65 106 155 212 262 365 412 379 607 617 1085

3. Quartile 17 24 112 249 477 560 515 893 994 650 1006 1454 1462

Max-Avg 17 24 1142 5602 7171 6287 6348 8233 4603 7988 1728 4415 2549

Problem

Table B.7: The arithmetic means of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the CrissCross domain (columns).
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ModSel PlanSel P0 P1 P2 P0-3 P0-2 P0-P2 P0-P1 P1-P2 P1-2 P0-P1-P2 P1-3 P2-2 P2-3

ems_lcf cloca 0 0 356 31078 3225597 250435 9508896 3569364

hz_lcf cloca 0 1 5035 2034191 1038364

lcf_da cloca 0 1 475 3634485 16034 861394 3108195 2544932 0

lcf_du cloca 0 1 4798 2195450

lcf_ems cloca 0 1 126 121914 789830 568258 5033523

lcf_hz cloca 1 1 1696 5100236 223781

lcf_ia cloca 1 1 6474 152787 3067687 345091 6944206

lcf_iu cloca 1 1 9228 57433 3527354 308714 2770790

lcf_mod cloca 1 1 1743 6480971

lcf_pExp cloca 0 1 553 5731070 10825205

ems df 0 0 23 1835 155 21590 149 3909 1060 3610 1867 14301 32426

shop df 1 1 27 22980 319 2324 21082 5949 23275 5263 28879 248 19773

umcp df 1 0 47 17387 3565 4650 1255 4321420 510668 0 3961 18984

ems_lcf du_fmf 0 0 5 493 586 972 5189 1138 15396

hz_lcf du_fmf 0 0 50881

lcf_da du_fmf 0 0 1 664 10009 0 70706 13559

lcf_du du_fmf 0 0 42 14056 0 28537 0 39760

lcf_ems du_fmf 0 0 3 6495 1937 902 1109 6544 56716 123288

lcf_hz du_fmf 0 0 0 0 146851 965

lcf_ia du_fmf 0 0 65784 4596 113 8483 13198 3188

lcf_iu du_fmf 0 0 122566 1769 113 6696 15722 339728

lcf_mod du_fmf 0 0 76 2137 1454 21985 53309 0 157675

lcf_pExp du_fmf 0 0 131 9637 10899 20164 5513 139093 10952 524797

umcp ff(ct) 1 1 2354 4389221

ems_lcf fhz_fmf 0 0 9 390 218 121 125 127 227 3621 15165

hz_lcf fhz_fmf 0 0 6 502 4 26526 69 25 8023 63 143 52

lcf_da fhz_fmf 0 0 4 762 40 1036 1556832 377 2927 0 19423 108511

lcf_du fhz_fmf 0 0 4 369 121 12497 447 138 337 5696

lcf_ems fhz_fmf 0 0 15 198 114 209 94 689 68 79599 4817 25359 962830

lcf_hz fhz_fmf 0 0 3 654 94 7905 49 42 4321 395 1189438

lcf_ia fhz_fmf 0 0 2 56 2 39 34 120 525 208 7139 2331 153

lcf_iu fhz_fmf 0 0 1 20 104 29 6 89 29169 174 2975

lcf_mod fhz_fmf 0 0 5 1769 671 645 397 1968611 1766 8294 32423 22512

lcf_pExp fhz_fmf 0 0 8 2925 635 453 41 71948 4150423 2257 2721 607915 15326

hz_lcf_iu fhz_lcp 0 0 1 120 86 84 1040 724 1269 1169 603 47163 66352

hz_lcf fhz_lcp_fmf 0 0 79 103 5 0 9 2249 8752 2203 1187 0

hz_lcf_iu fhz_mcp 0 0 22 301 140 832 562 936 22919 120 28820 261233 60147

hz_lcf fhz_mcp_fmf 0 0 3 457 16 0 15 14507 18202 63349 2679 564

ems_lcf fmh_fmf 0 0 5 0 32417 56527 123413

hz_lcf fmh_fmf 0 0 4 46904 3270 20563 17148 45562 74012 504098 627947 1470048

lcf_da fmh_fmf 0 0 11 25056 107859 27371

lcf_du fmh_fmf 0 0 22 50116 458 385442 2893 0 6110 173360

lcf_ems fmh_fmf 0 0 5 0 131576 0 405055 1007222

lcf_hz fmh_fmf 0 0 2 4261 2239 9933 6667 181409

lcf_ia fmh_fmf 0 0 13 27635 500 2599200 4997 261590 112220 4494990

lcf_iu fmh_fmf 0 0 28 50918 2393 1051525 3330 353631 12604 2463667

lcf_mod fmh_fmf 0 0 19 36949 6424142 70940 2863 0 131885 1883936

lcf_pExp fmh_fmf 0 0 6 68627 41926 0 3802 8118 929943

ems_lcf iu_fmf 0 0 7 105451 454 1174 294 3200 178 11517 4812

hz_lcf iu_fmf 0 0 24134 24638

lcf_da iu_fmf 0 0 19 0 66 1835 77618 35442

lcf_du iu_fmf 0 0 43 8275 66358 7952 0 7439147

lcf_ems iu_fmf 0 0 3 115587 385 427 1059 13004 12926 116340 125052 77269 0

lcf_hz iu_fmf 0 0 16327 0 42863 3008383

lcf_ia iu_fmf 0 0 1734 1855 718 21538 17373 101219 44402

lcf_iu iu_fmf 0 0 2000 2053 135 18799 18814 4781617

lcf_mod iu_fmf 0 0 402 6084 2993 1770 6503 37457 124266 160176

lcf_pExp iu_fmf 0 0 27 83 1640 3650 2499 51441 63725 260898

hz_lcf_iu lcp_fhz 0 0 18 520 10235 187 194 43 524 215 10085 79 6074

hz_lcf lcp_fhz_fmf 0 0 19 640 39 82 745 197 485 1316 111

ems_lcf lhz_fmf 0 0 4 1406 588 525 4162 398 0 9185

hz_lcf lhz_fmf 0 0 2 183 176 40045 396475 2377 103740 0 123505

lcf_da lhz_fmf 0 0 18 432 4822 8770013 2855 5454 1715653

lcf_du lhz_fmf 0 0 6 0 1465 196797 0 26968

lcf_ems lhz_fmf 0 0 21 447 2882 431 8696 608

lcf_hz lhz_fmf 0 0 24 143 398285 810046 161221

lcf_ia lhz_fmf 0 0 6 23950 398 4165 627406 44610

lcf_iu lhz_fmf 0 0 17 0 108 35439 873135 216429

lcf_mod lhz_fmf 0 0 65 0 1061 8231 7941 53990 59590 0

lcf_pExp lhz_fmf 0 0 12 0 2149 3004 982 4130 0 0

hz_lcf_iu mcp_fhz 0 0 6596 227 0 0 0 0

hz_lcf mcp_fhz_fmf 0 0 126678 0 18 0

ems_lcf psaoca 0 1 98 76977 515 29906 1509 65929 5255 140758 165212

hz_lcf psaoca 0 1 1642 40240 598 88937 76 0 957 143737 16913 4194

lcf_da psaoca 0 1 385 3814 349 2633 527703 58872 2306 18690 20907 321143 262088

lcf_du psaoca 0 1 2531 2299 71 24186 1489 234 860588 25832 47831 306647

lcf_ems psaoca 0 1 66 9759 295 11298 995 24167 545 26399 555723 32409 77370

lcf_hz psaoca 1 1 1559 3254 597 31522 264 380 99006 9877 26080 4847296

lcf_ia psaoca 1 0 415 16 39 129 187 345 236 153199 1397 49385 207889

lcf_iu psaoca 1 1 5686 656 277 184 601 352 121 161384 2147 9935 301155

lcf_mod psaoca 1 1 7818 1910 5151414 76204 6005773 308127 69064 0 6417955 31501

lcf_pExp psaoca 0 1 980 23242 111371 54170 1207763 314836 126437 47911 0 0 0

shop psaoca 1 0 44 3928405 237 7684598 55423

ems_lcf sdr_fmf 0 0 3 599 69 25 106 36 352 23322 2663

hz_lcf sdr_fmf 0 0 12 218 10 767 7130 16589 3425 249 14836

lcf_da sdr_fmf 0 0 4 99 148 33 5036967 3300 2953 7417

lcf_du sdr_fmf 0 0 5 111 934 13554 286 17730 38501 20367

lcf_ems sdr_fmf 0 0 7 320 79 332 452 586 1055 1832 5245 46178 1026020

lcf_hz sdr_fmf 0 0 1 12 54 0 15 3416 40373 191 2811

lcf_ia sdr_fmf 0 0 2 17 1 108 8 150 11 3269 81 2725 2054

lcf_iu sdr_fmf 0 0 2 171 13 22 228 45 5017 12604 1300783

lcf_mod sdr_fmf 0 0 1 2570 295 0 740 515978 6934 3663 22978 16263

lcf_pExp sdr_fmf 0 0 4 1238 245 235001 250 1938 5925 10977 1996 246967 90862

Min-Var 0 0 0 0 0 0 0 0 0 0 0 0 0

1. Quartile 0 0 5 109 117 127 257 358 461 1169 1632 4349 5069

Median 0 0 21 647 500 2130 1509 3250 6544 8752 7139 29688 31963

3. Quartile 0 0 475 18785 7385 30310 31988 51372 66801 63725 33690 164214 133356

Max-Var 1 1 126678 3928405 6480971 10825205 8770013 9508896 6944206 860588 4494990 7439147 4847296

Problem

Table B.8: The sample variance of the explored search space sizes by the strategy combinations (rows) in
the problem instances of the CrissCross domain (columns).
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B Empirical Evaluation – Data

ModSel PlanSel P0 P1 P2 P0-2 P0-P1 P1-2 P0-P2 P2-2 P0-3 P1-P2 P1-3 P0-P1-P2 P2-3 Avg

ems_lcf cloca 0% 0% 0% 0% 0% 0% 0% 100% 100% 0% 100% 100% 100% 38%

hz_lcf cloca 0% 0% 0% 0% 40% 100% 100% 100% 100% 100% 100% 100% 100% 65%

lcf_da cloca 0% 0% 0% 0% 20% 80% 0% 100% 0% 40% 100% 100% 100% 42%

lcf_du cloca 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 69%

lcf_ems cloca 0% 0% 0% 0% 0% 0% 20% 100% 100% 100% 100% 100% 100% 48%

lcf_hz cloca 0% 0% 0% 0% 60% 100% 100% 100% 100% 100% 100% 100% 100% 66%

lcf_ia cloca 0% 0% 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 46%

lcf_iu cloca 0% 0% 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 46%

lcf_mod cloca 0% 0% 0% 20% 100% 100% 100% 100% 100% 100% 100% 100% 100% 71%

lcf_pExp cloca 0% 0% 0% 20% 100% 100% 60% 100% 100% 100% 100% 100% 100% 68%

ems df 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

shop df 0% 0% 0% 0% 20% 20% 0% 0% 20% 20% 0% 40% 20% 11%

umcp df 0% 0% 0% 0% 0% 0% 0% 40% 20% 20% 60% 80% 100% 25%

ems_lcf du_fmf 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 100% 100% 100% 31%

hz_lcf du_fmf 0% 0% 60% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 82%

lcf_da du_fmf 0% 0% 0% 0% 80% 100% 0% 0% 100% 20% 100% 100% 100% 46%

lcf_du du_fmf 0% 0% 0% 0% 20% 80% 80% 0% 100% 100% 100% 100% 100% 52%

lcf_ems du_fmf 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 100% 40% 100% 26%

lcf_hz du_fmf 0% 0% 80% 80% 100% 100% 20% 0% 100% 100% 100% 100% 100% 68%

lcf_ia du_fmf 0% 0% 20% 0% 0% 0% 0% 20% 100% 100% 100% 100% 100% 42%

lcf_iu du_fmf 0% 0% 0% 0% 0% 0% 0% 20% 100% 100% 100% 100% 100% 40%

lcf_mod du_fmf 0% 0% 0% 0% 20% 100% 0% 20% 100% 0% 100% 80% 100% 40%

lcf_pExp du_fmf 0% 0% 0% 0% 20% 20% 0% 40% 100% 0% 100% 60% 100% 34%

umcp ff(ct) 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 69%

ems_lcf fhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 15%

hz_lcf fhz_fmf 0% 0% 0% 0% 0% 0% 40% 0% 0% 100% 20% 0% 40% 15%

lcf_da fhz_fmf 0% 0% 0% 0% 20% 0% 0% 0% 0% 0% 100% 80% 20% 17%

lcf_du fhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 100% 100% 23%

lcf_ems fhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 2%

lcf_hz fhz_fmf 0% 0% 0% 0% 0% 0% 20% 0% 0% 100% 0% 0% 100% 17%

lcf_ia fhz_fmf 0% 0% 0% 0% 0% 0% 0% 20% 0% 0% 0% 0% 0% 2%

lcf_iu fhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 15%

lcf_mod fhz_fmf 0% 0% 0% 0% 0% 0% 40% 0% 0% 100% 0% 0% 0% 11%

lcf_pExp fhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 40% 3%

hz_lcf_iu fhz_lcp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 40% 0% 40% 6%

hz_lcf fhz_lcp_fmf 0% 0% 0% 0% 0% 0% 80% 0% 0% 100% 0% 0% 80% 20%

hz_lcf_iu fhz_mcp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 0% 20% 3%

hz_lcf fhz_mcp_fmf 0% 0% 0% 0% 0% 0% 80% 0% 0% 100% 0% 0% 40% 17%

ems_lcf fmh_fmf 0% 0% 0% 0% 0% 0% 100% 100% 80% 100% 100% 100% 100% 52%

hz_lcf fmh_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 100% 9%

lcf_da fmh_fmf 0% 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 100% 54%

lcf_du fmh_fmf 0% 0% 0% 0% 0% 0% 60% 100% 0% 80% 0% 100% 100% 34%

lcf_ems fmh_fmf 0% 0% 0% 0% 0% 0% 80% 100% 80% 100% 100% 100% 100% 51%

lcf_hz fmh_fmf 0% 0% 0% 0% 0% 0% 100% 100% 0% 100% 0% 100% 100% 38%

lcf_ia fmh_fmf 0% 0% 0% 0% 0% 0% 60% 100% 0% 0% 20% 100% 100% 29%

lcf_iu fmh_fmf 0% 0% 0% 0% 0% 0% 40% 100% 0% 0% 40% 100% 100% 29%

lcf_mod fmh_fmf 0% 0% 0% 0% 0% 20% 20% 100% 0% 80% 0% 100% 100% 32%

lcf_pExp fmh_fmf 0% 0% 0% 0% 0% 0% 80% 100% 0% 100% 0% 100% 100% 37%

ems_lcf iu_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 100% 100% 17%

hz_lcf iu_fmf 0% 0% 0% 20% 100% 100% 100% 100% 100% 100% 100% 100% 100% 71%

lcf_da iu_fmf 0% 0% 0% 0% 100% 100% 20% 40% 80% 60% 100% 100% 100% 54%

lcf_du iu_fmf 0% 0% 0% 0% 0% 80% 40% 20% 100% 100% 100% 100% 100% 49%

lcf_ems iu_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 40% 80% 9%

lcf_hz iu_fmf 0% 0% 0% 80% 100% 100% 20% 0% 100% 100% 100% 100% 100% 62%

lcf_ia iu_fmf 0% 0% 0% 0% 0% 0% 0% 20% 100% 100% 100% 100% 60% 37%

lcf_iu iu_fmf 0% 0% 0% 0% 0% 0% 0% 20% 100% 100% 100% 100% 100% 40%

lcf_mod iu_fmf 0% 0% 0% 0% 0% 40% 0% 40% 100% 0% 100% 40% 100% 32%

lcf_pExp iu_fmf 0% 0% 0% 0% 0% 20% 0% 20% 100% 0% 100% 60% 100% 31%

hz_lcf_iu lcp_fhz 0% 0% 0% 0% 20% 0% 20% 20% 20% 0% 0% 20% 0% 8%

hz_lcf lcp_fhz_fmf 0% 0% 0% 100% 0% 20% 0% 0% 0% 0% 20% 0% 100% 18%

ems_lcf lhz_fmf 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 100% 80% 100% 29%

hz_lcf lhz_fmf 0% 0% 0% 0% 0% 40% 60% 60% 40% 40% 100% 80% 100% 40%

lcf_da lhz_fmf 0% 0% 0% 0% 0% 0% 0% 20% 100% 0% 100% 100% 100% 32%

lcf_du lhz_fmf 0% 0% 0% 0% 0% 80% 100% 0% 80% 100% 100% 100% 100% 51%

lcf_ems lhz_fmf 0% 0% 0% 0% 0% 0% 0% 100% 100% 0% 100% 100% 100% 38%

lcf_hz lhz_fmf 0% 0% 0% 0% 0% 0% 100% 0% 100% 100% 100% 100% 100% 46%

lcf_ia lhz_fmf 0% 0% 0% 0% 0% 20% 100% 0% 40% 100% 100% 100% 100% 43%

lcf_iu lhz_fmf 0% 0% 0% 0% 0% 20% 100% 0% 80% 100% 100% 100% 100% 46%

lcf_mod lhz_fmf 0% 0% 0% 0% 0% 20% 0% 100% 80% 0% 100% 80% 100% 37%

lcf_pExp lhz_fmf 0% 0% 0% 0% 0% 80% 0% 100% 80% 0% 80% 100% 100% 42%

hz_lcf_iu mcp_fhz 0% 0% 0% 0% 80% 80% 80% 80% 100% 100% 100% 100% 100% 63%

hz_lcf mcp_fhz_fmf 0% 0% 0% 0% 100% 100% 100% 100% 80% 80% 100% 100% 100% 66%

ems_lcf psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 15%

hz_lcf psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0% 40% 100% 17%

lcf_da psaoca 0% 0% 0% 0% 20% 0% 0% 0% 0% 0% 0% 0% 60% 6%

lcf_du psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 20% 9%

lcf_ems psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 0% 2%

lcf_hz psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 8%

lcf_ia psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_iu psaoca 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_mod psaoca 0% 0% 0% 20% 20% 40% 0% 20% 20% 100% 80% 0% 60% 28%

lcf_pExp psaoca 0% 0% 0% 0% 20% 40% 0% 80% 20% 0% 80% 0% 80% 25%

shop psaoca 0% 0% 0% 0% 20% 40% 100% 100% 60% 100% 100% 100% 100% 55%

ems_lcf sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 15%

hz_lcf sdr_fmf 0% 0% 0% 0% 0% 0% 100% 0% 0% 100% 20% 0% 40% 20%

lcf_da sdr_fmf 0% 0% 0% 0% 20% 0% 0% 0% 0% 0% 100% 100% 100% 25%

lcf_du sdr_fmf 0% 0% 0% 0% 0% 0% 40% 0% 0% 100% 0% 100% 100% 26%

lcf_ems sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_hz sdr_fmf 0% 0% 0% 0% 0% 0% 80% 0% 0% 100% 0% 0% 100% 22%

lcf_ia sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

lcf_iu sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 15%

lcf_mod sdr_fmf 0% 0% 0% 0% 0% 0% 80% 0% 0% 100% 0% 0% 40% 17%

lcf_pExp sdr_fmf 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Min-F-Ratio 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1. Quartile 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 60% 15%

Median 0% 0% 0% 0% 0% 0% 0% 0% 20% 80% 80% 100% 100% 31%

3. Quartile 0% 0% 0% 0% 20% 40% 80% 100% 100% 100% 100% 100% 100% 46%

Max-F-Ratio 0% 0% 80% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 82%

Average 0% 0% 2% 5% 16% 24% 31% 35% 45% 52% 55% 65% 78% 31%

Problem

Table B.9: The failure ratio of the strategy combinations (rows) in the problem instances of the CrissCross
domain (columns).
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